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Abstract 

The study of natural hazard interrelations exposes the complexity of extreme climatological, 

geophysical and hydrological processes and poses new science challenges. This PhD thesis is 

located at the confluence of multivariate statistics, climatology and natural hazard modelling and 

aims to provide new approaches to model and quantify natural hazard interrelations. Chapter 2 

consists of a critical literature review of 146 sources. From these, the historical context for 

quantitative single-hazard and multi-hazard assessment is discussed, and 19 different modelling 

methods to model multi-hazard interrelations are identified and organized into three broad 

approaches (empirical, stochastic, mechanistic). Chapter 3 examines the multi-hazard landscape 

of the European Atlantic Region (EAR) but has global relevance in its application. A total of 16 

relevant natural hazards for the EAR region are identified on three main criteria: (i) frequency of 

occurrence, (ii) spatial relevance, (iii) potential to impact energy infrastructures. Based on the 

knowledge of hazard interrelations and physical drivers, natural hazards are grouped into five 

multi-hazard networks. Through a review of 32 single hazard catalogues, 50 historic major multi-

hazard events in the EAR are pinpointed for each network. Within each network, the prevalence 

of each hazard interrelation is discussed. After identifying the main modelling approaches and 

dominant hazard interrelations in the EAR, the abilities of a group of modelling method for multi-

hazard modelling is assessed. Chapter 4 evaluates the efficacy of bivariate extreme modelling 

approaches for multi-hazard scenarios. Six bivariate extreme models are evaluated and compared 

by using each model’s fitting capabilities to 60 synthetic datasets. The properties of the synthetic 

datasets are matching bivariate time series of environmental variables. The systematic framework 

contrasts model strengths (model flexibility) and weaknesses (poorer fits to the data). The benefits 

of this framework are highlighted with two applications to natural hazard interrelation modelling. 

Using the findings of Chapter 3, two pairs of natural hazard are selected: extreme hot 

temperature–wildfire; extreme wind–extreme rainfall. Chapter 5 analyses the spatiotemporal 

features of hazard interrelations using climate reanalysis data for two hazards (extreme wind and 

extreme rainfall) for 1979–2019 within a region including Great Britain and the British channel. 

A clustering algorithm is used to create hazard clusters with extreme values (above the 99% 

quantile) of hourly precipitation and wind gust. A total of 4555 compound wind-rainfall clusters 

are detected for 1979–2019 by assessing the spatiotemporal overlap of the two hazards. The 

characteristics (e.g., size, duration, season, intensity) of created clusters are confronted with 

observations and analysed. One of the bivariate modelling methods assessed in Chapter 4 is used 

to estimate return periods of compound hazard events. The relationship between the return period 

of compound hazard events and the spatial and temporal attributes of compound hazards events 

is then analysed. Throughout the thesis, the following main aspects of a quantitative multi-hazard 

approach are addressed: interrelation characterisation, multivariate modelling, physical drivers, 

spatiotemporal overlap, data. Robust solutions to identify, discriminate and model hazard 

interrelations at different spatial and temporal scales are offered. 
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1, 2, 3, 4, 5, 6 
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Risk “The potential for adverse consequences for human or 

ecological systems, recognising the diversity of values 
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independent  

1, 2, 3, 4 

Vulnerability “The conditions determined by physical, social, 
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assets or systems to the impacts of hazards” (UNDRR, 

2017, p.24) 

1 
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Chapter 1: Introduction 

Planet Earth includes many complex, interconnected and interacting processes. The outcomes of 

these processes can be destructive for humans and the environment and lead to disasters 

(AghaKouchak et al., 2018). Some of these destructive outcomes are called natural hazards, such 

as floods, earthquakes, landslides, and wildfires (Alexander, 1993; Eden, 2008). Natural hazards 

are far from independent, as has been shown in previous studies (e.g., Hewitt and Burton, 1971; 

Gill and Malamud, 2014). This thesis examines interrelations between natural hazards and 

develops methodologies to quantify the dependence between natural hazards and extreme events. 

This introduction is organized as follows: First, the terms extreme events, natural hazards and 

associated concepts will be defined and discussed in Section 1.1. The different approaches 

developed to analyse hazard interrelations are introduced in Section 1.2. Section 1.3 outlines the 

motivations to study natural hazards in a multi-hazard context from industry and academic 

perspectives. Aims and objectives are presented and discussed in Section 1.4. Finally, an outline 

of the thesis is provided in Section 1.5. 
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 Extreme events, natural hazards and risk 

In the thesis forward matter (pp. 15–16) is given a glossary of 22 terms used commonly 

throughout this thesis. In this section, I discuss several of these terms surrounding the concepts of 

extreme events, natural hazards and risk.  

 

In this thesis, the term natural hazard (hereafter referred to as a ‘hazard’) will follow the definition 

of UNISDR (2009), as a natural process or phenomenon that may have negative impacts on 

society. An impact can be defined as the effects (e.g., consequences, losses) on natural and human 

systems of extreme events or natural hazards (IPCC, 2012). Although this thesis is not focusing 

on impact, potential negative impacts and damages of extreme events or natural hazards to energy 

infrastructure are its drivers. Potential damaging impacts are often related to the magnitude of the 

hazard or extreme event (Merz et al., 2020). In the hydro-climatological (Della-Marta et al., 2009; 

Mazas and Hamm, 2017) and solid-earth (Geist and Parsons, 2006; McGuire, 2008) sciences, the 

magnitude of hazards are often quantified in terms of probability or return frequency and therefore 

associated with extreme events. An extreme event is defined as the occurrence of a value of an 

environmental variable above (or below) a threshold value near the upper (or lower) ends (‘tails’) 

of the range of observed values of the variable (Seneviratne et al., 2012).  

 

Extreme events and natural hazards often but not always negatively impact society (Lavell et al., 

2012). Disasters (i.e., severe disruption of the functioning of a community or a society) (UNDRR, 

2017) are the result of the interaction of the hazard with two other components of risk (exposure 

and vulnerability) (UNDRR, 2017). A risk can be defined as “the potential for adverse 

consequences for human or ecological systems” (IPCC, 2019, p.696). Figure 1.1 displays these 

three key concepts that make up risk: hazard, vulnerability and exposure (See Glossary). The 

need to enlarge this risk framework (Figure 1.1) has been stressed by the United Nation Sendai 

Framework (UNDRR, 2015) and recent literature (Gallina et al., 2016; Terzi et al., 2019). In 

particular, expanding the traditional risk components into multi-hazard, exposure, and multi-

vulnerability is necessary to represent complex multi-risk interactions (Terzi et al., 2019). 

Therefore, the contribution of this work to disaster risk reduction is confined to the hazard 

component and in particular, to interrelations between hazards. The interest around interrelated 

hazard and extremes has been increasing over the last decade (e.g. Kappes et al., 2010; Marzocchi 

et al., 2012) and is now aggregated under two main concepts: multi-hazard (Gill and Malamud, 

2014) and compound events (Leonard et al., 2014). 
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Figure 1.1: Key concepts involved in disaster risk management (modified from Lavell et al., 2012) 

 Multi-hazard and compound events 

When there is more than one hazard at a time, the term multi-hazard is often used (Kappes et al., 

2010). A multi-hazard approach accounts for different probabilities and intensities of multiple 

hazards (Eshrati et al., 2015). Different intergovernmental organisations have emphasized the 

need for multi-hazard approaches. The Sendai Framework defined a multi-hazard approach as 

(UNDRR, 2017, p.19) “the selection of multiple major hazards that the country faces, and the 

specific contexts where hazardous events may occur simultaneously, cascadingly, or cumulatively 

over time, and taking into account the potential interrelated effects”. When two hazards occur in 

a cascade, the primary and the secondary hazard can cause different impacts or consequences to 

human or natural systems. The hazard interrelations can also lead to a combined impact that is 

different from the sum of each hazard’s impacts separately. We note that in this thesis, given a 

primary hazard triggering a secondary natural hazard (e.g., an earthquake triggering landslides), 

the secondary hazard is not considered an impact of the primary hazard.  

 

In the Intergovernmental Panel on Climate Change (IPCC) special report on managing the risks 

of extreme events and disasters to advance climate change adaptation (SREX) (Seneviratne et al., 

2012), the combination of multiple physical processes was termed as a compound event. The 

definition of these compound events is relatively similar to the one of multi-hazard. SREX 

(Seneviratne et al., 2012, p.118) defined compound events as: “(i) two or more extreme events 

occurring simultaneously or successively, (ii) combinations of extreme events with underlying 
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conditions that amplify the impact of the events, or (iii) combinations of events that are not 

themselves extremes but lead to an extreme event or impact when combined. The contributing 

events can be of similar (clustered multiple events) or different type(s)”. 

 

The terms multi-hazard and compound event bring together much of the literature on hazard 

interrelations. We note that although this work is built on these concepts, definitions provided in 

this thesis, in particular in Chapter 2 can differ from the ones proposed by other scholars. For 

example, this thesis confines compound hazard to the interrelation between statistically dependent 

hazards as the result of a common primary event or large-scale processes. The definition of 

compound events by SREX encompass more interrelation types (see Chapter 2). In a recent 

article by Zscheischler et al. (2020), a typology of compound weather and climate events that can 

be related to the classification done in Chapter 2 is proposed.  

 

Although Hewitt and Burton (1971) advocated almost 50 years ago for an “all-hazard-at-a-place” 

framework (Gill, 2016), the field of multi-hazard remains relatively new and fragmented. Multi-

hazard research is by nature multidisciplinary; it includes, among others, statisticians, physical 

and social geographers, earth scientists, civil engineers. The consequence is a range of research 

that reports this hybridity by adopting different methods, approaches, vocabulary, and different 

spatial scales (e.g., a country, a region, a building) (See Chapter 2). The variety of approaches 

can be explained by the variety of possible impacts caused by natural hazards, which can differ 

widely depending on the scale and sector one is interested in (e.g., agricultural crops vs transport 

network). This thesis testifies to this plurality and intends to capture the multiple facets of multi-

hazard research at the interface between statistics, climate science, geoscience and disaster risk 

reduction.  

 Motivation 

This section outlines the motivation to study natural hazards in a multi-hazard context from 

industry and academic perspectives. Challenges associated with multi-hazards are discussed, and 

the approach proposed in this thesis is presented. 

 

Recent disasters and the constantly increasing threat of climate disruption draw the attention of 

various industrial sectors toward multi-hazard challenges (Ciurean et al., 2018). Among these, 

the energy sector, particularly the nuclear industry, is firmly aiming to lead the way. This work 

has been done in collaboration with research engineers from EDF (Electricité de France). EDF is 

the biggest electricity supplier in Europe and the 5th globally, with an installed capacity of 130 

GW in 2017, of which 56% is nuclear (IEA, 2018). Most EDF assets are located in France and 

the United Kingdom. EDF activities and assets (dams, wind turbines, electric grid) have always 



 Introduction  

Page 23 

required the most advanced methods in natural hazard understanding and risk assessment to 

ensure the safety of the infrastructures and the quality of its service. Although the methodologies 

developed in this doctoral work aim to be widely applicable in terms of geographical location, 

these methodologies are applied within a region that is hosting a fair amount of EDF 

infrastructures (Chapter 3). 

 

On March 11 2011, the Great North East Japan earthquake of magnitude 9 triggered a devastating 

tsunami (waves exceeding 10 m) and landslides (Miyagi et al., 2011; Poljansek et al., 2017). The 

tsunami wave was higher than planned in the protection of the Fukushima nuclear power plant 

(Mignan et al., 2016). This event led to heavy casualties, enormous property losses and a major 

nuclear accident (Norio et al., 2011).  After the Fukushima nuclear disaster, the nuclear industry 

reacted by adjusting its safety requirements. Several projects were launched (ASAMPSA_E, 

Narsis) aiming to “identify some lessons learned from the Fukushima Dai-ichi accident” (Kumar 

et al., 2016, p.2) and “better understand and estimate the likelihood of the most causes prone to 

initiate nuclear accidents and to identify the most critical elements of the systems” (Narsis, 2020). 

The need to adopt a multi-hazard approach was identified as one of the main lessons to be learnt 

from this catastrophe. The characterisation of hazard interrelations was the first step toward a 

multi-hazard approach (Decker and Brinkman, 2015; Narsis, 2020). This thesis is to be viewed in 

this context. It aims to develop a quantitative multi-hazard approach and bridge some existing 

gaps in academic literature.  

 

In the last decade, multi-hazards risk assessment (MHRA) studies highlighted the need for a 

“common language” between hazards of different nature and different origins (Kappes et al., 

2010; Schmidt et al., 2011; Marzocchi et al., 2012; Orencio and Fujii, 2013). One primary way 

to deal with multiple hazards is to study each hazard for a given area separately. Spatial and 

temporal dynamics play an essential role in hazard interrelations, leading to compound hazard or 

hazard cascades (Sutanto et al., 2020; Zscheischler et al., 2020). The impact of each hazard could 

be compared collectively (with losses as impact variable; see Figure 1.2) depending on their 

intensity/magnitude through risk curves or hazard maps (Schmidt-Thomé and Kallio, 2006; 

Schmidt et al., 2011; Kappes et al., 2012a; Orencio and Fujii, 2013). A limitation of the approach 

illustrated in Figure 1.2 is that interrelations between hazards are not considered. This has been 

described as a “multilayer single hazard” approach by Gill and Malamud (2014). Indeed, the 

combined impact of several natural hazards may be different than the sum of their parts and leads 

to increased impacts (Tarvainen et al., 2006; Gill and Malamud, 2014; de Ruiter et al., 2020). As 

an example, during storm Xynthia in 2010, the combination of extreme wind gusts, high tides and 

a skew surge modified the vulnerability of flood protection infrastructures (dikes) and led to their 

failure (Liberato et al., 2013). 
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Figure 1.2: Example of risk curves (probability of exceedance as a function of loss) of windstorms, floods and 

earthquakes for the city of Cologne, Germany. Losses include buildings and contents in the sector’s private 

housing, commerce and industry. Figure from Grunthal et al. (2006). 

Several semi-quantitative approaches have been developed to display and examine hazard 

interrelation. Matrices have been developed to display and qualify natural hazards interrelations 

(e.g., Kappes et al., 2010; Mignan et al., 2014; Gill and Malamud, 2014) with an example given 

in Figure 1.3. These matrices provide information about interrelations between pairs of hazards 

(e.g., interrelation type, the plausibility of the interrelation). When dealing with more than two 

hazards, qualitative network diagrams, with nodes (e.g. hazards/processes) and connectors 

(relationships types) to generate a diagram of possible multi-hazard relationships have been used 

in different contexts (Ciurean et al., 2018). Such approaches have been used to visualize 

interrelations between natural hazards and drivers in mountainous (van Westen et al., 2014) or 

coastal (Leonard et al., 2014) environments. A variety of quantitative methods and models exist 

for the analysis of hazard interrelations (Hao and Singh, 2016; Sadegh et al., 2018). Nonetheless, 

the selection of suitable models for a given hazard interrelation remains challenging. Model 

outputs also need to be translated into relevant metrics for practitioners. 
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Figure 1.3: An example of a matrix of interrelated hazards A 21 × 21 matrix with primary natural hazards on 

the vertical axis and secondary hazards on the horizontal axis. These hazards are coded, as explained in the key. 

This matrix can be used to present an example of a scenario. In this example, a storm event (ST) triggers flooding 

(FL), which then triggers landslides (LA). These landslides (LA) may then trigger or increase the probability of 

further flooding (FL) through the blocking of a river or the increase of sediment within the fluvial system. Figure 

from Gill and Malamud (2014) 

The identification of all spatially relevant hazards to a place along with the review of natural 

hazard interactions and their relation to different environments are essential steps toward adopting 

a multi-hazard approach. This thesis advances the development of a full multi-hazard assessment 

by establishing a quantitative multi-hazard approach that accounts for and quantifies relationships 

between hazards. The quantitative multi-hazard approach developed through this thesis is 

articulated around five interlinked axes: (i) classify hazard interrelations (ii) assess modelling 

methods for hazard interrelations, (iii) catalogue datasets suitable multi-hazard assessment., (iv) 

consider spatiotemporal scales of hazard interrelations and (v) identify physical processes behind 

multi-hazard. These five areas of work are displayed in Figure 1.4 and are key concepts while 

defining the aim and objectives of this thesis. 
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Figure 1.4: Graphical representation of the five interlinked work domains around a quantitative multi-hazard 

approach as defined in this thesis.  

 Aim and objectives 

Research aim: This thesis aims to develop a quantitative multi-hazard approach by (i) 

increasing the understanding of hazard interrelations, (ii) evaluating and developing 

methods to quantify natural hazard interrelations in time and space.  

 

The main research objectives (O) and research questions (Q) are the following (colours are 

defined further below): 

 

O1: To systematically identify and classify approaches to quantify specific hazard 

interrelations.  

Q1.1: What methods have been used in the literature for a quantitative multi-hazard assessment? 

Q1.2: How does one create a general classification for natural hazard interrelation models?  

Q1.3: How does one quantitively model the relationship within different natural hazards pairs? 

Q1.4: What quantitative model(s) is(are) the most suitable for a given natural hazard 

interrelation? 

 

O2: To design multi-hazard scenarios in a given region with as a case study Western 

Europe 
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Q2.1: Which natural hazards and hazards interrelations are relevant to Western Europe?  

Q2.2: Which hazards are more likely to occur within the same multi-hazard event in Western 

Europe? 

Q2.3: How does one prioritize which natural hazard interrelations should be studied? 

 

O3: To apply quantitative models to diverse hazard interrelations  

Q3.1: How does one systematically select the most suitable quantitative model for a given hazard 

interrelation? 

Q3.2: How does one translate hazard interrelation types into probability types? 

Q3.3: What are the different types of numerical data available to study hazard interrelations in 

Western Europe? 

 

O4: To analyse spatiotemporal features of hazard interrelations with gridded data  

Q4.1: How does one identify occurrences of natural hazards with climate reanalysis data? 

Q4.2: How does one define hazard interrelations in space and time?  

Q4.3: What is the influence of the intensity of natural hazards on the spatiotemporal features of 

compound hazards? 

 

Each research question is associated with one of the five aspects of a quantitative multi-hazard 

approach displayed in Figure 1.4. The following colours are used. 

− Orange: hazard interrelations classification 

− Grey: quantitative hazard interrelations modelling 

− Brown: numerical data for multi-hazard 

− Blue: spatiotemporal scales of hazard interrelations 

− Green: identify physical processes and drivers behind multi-hazard. 

 

 Outline of the thesis  

Figure 1.5 displays each chapter's main aims and connects these aims with the five aspects of a 

quantitative multi-hazard approach. Figure 1.5 highlights the four research chapter's 

complementarity in covering and every aspect of a quantitative multi-hazard approach.  
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Figure 1.5: Main aims of each of the four research chapters of the thesis. The aims are linked by their colour to 

the five key aspects of the quantitative multi-hazard approach displayed in Figure 1.4. 

This PhD thesis is organized into four research chapters, as follows. 

 

Chapter 2: A review of quantification methodologies for multi-hazard interrelationships.  

This review chapter uses grey- and peer-review literature to identify and compare current research 

available to quantify hazard interrelations. It provides a historical context for quantitative single 

hazard and multi-hazard assessment. It identifies 19 different modelling methods to quantify 

natural hazard interrelationships which are clustered into three broad modelling approaches: 

stochastic, empirical, and mechanistic. Examples of applications for each of the three quantitative 

modelling approaches are provided. This chapter was published in September 2019 as Tilloy et 

al. (2019) (Tilloy A, Malamud BD, Winter H and Joly-Laugel A “A review of quantification 

methodologies for multi-hazard interrelationships” in Earth-Science Reviews). All authors 

discussed the whole plan of this article. I reviewed the literature, designed the different databases 

and finished the draft, including all figures in the article. Bruce Malamud, Hugo Winter and 

Amélie Joly-Laugel revised the article. Bruce Malamud provided support for the systematic and 

critical literature review methodology. 

 

Chapter 3: Multi-hazard landscape of Western Europe  

This research chapter identifies relevant hazards and hazard interrelations for the European 

Atlantic Region using blended sources of evidence and reviews data available in the public 

domain to study multiple natural hazards and quantitatively model their interrelations. A total of 
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16 interrelated hazards are grouped into five multi-hazard networks based on physical drivers 

(e.g., meteorological, geophysical) and prior knowledge on interrelations between hazards. A 

multi-hazard network is composed of a set of interrelated hazards occurring in a given space-time 

frame. A catalogue of 50 multi-hazards events (10 per network) is provided to illustrate the 

approach. Based on this catalogue, spatiotemporal characteristics of each network as well as the 

prevalence of each hazard and hazard interrelation in each network are discussed. Modelling 

multiple hazard interrelations requires data for different natural hazards with compatible 

characteristics (e.g., resolution). Indeed, 35 freely available datasets to study and model hazard 

interrelations were reviewed and classified. 

 

Chapter 4: Evaluating the efficacy of bivariate extreme modelling approaches for multi-

hazard scenarios 

This research chapter evaluates the efficacy of six distinct bivariate extreme models through their 

fitting capabilities to 60 synthetic datasets. The properties of the synthetic datasets (marginal 

distributions, tail dependence structure) are chosen to match bivariate time series of 

environmental variables. The systematic framework developed contrasts the model strengths 

(model flexibility) and weaknesses (poorer fits to the data). To highlight the benefits of the 

systematic modelling framework developed, two pairs of hazards are considered with the 

following environmental data: (i) observed daily precipitation and maximum wind gusts for 1971 

to 2018 in London, UK; (ii) observed daily mean temperature and wildfire numbers for 1980 to 

2005 in Porto district, Portugal. This chapter was published in August 2020 as Tilloy et al. (2020) 

(Tilloy A, Malamud BD, Winter H and Joly-Laugel A: “Evaluating the efficacy of bivariate 

extreme modelling approaches for multi-hazard scenarios” in Natural Hazards and Earth System 

Sciences). All authors discussed the plan of this article. I designed and implemented all the 

experiments, prepared all the data, and finished the draft, including all figures in the article. Bruce 

Malamud, Hugo Winter and Amélie Joly-Laugel revised the article. Hugo Winter provided 

support on the statistical modelling methods and theory. 
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Chapter 5: Spatiotemporal features of hazard interrelations: compound wind and 

precipitation extremes in Great Britain  

This research chapter uses climate reanalysis data (ERA5) to measure and analyse temporal and 

spatial features of natural hazards and their interrelations by using a spatiotemporal clustering 

technique. The chapter focuses on the interrelation between extreme precipitation and extreme 

wind gust during 1979–2019 within a region including Great Britain and North-West France. The 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is used to 

create hazard clusters with extreme values (above the 99% quantile) of precipitation and wind 

gust. The characteristics (e.g., size, duration, season, intensity) of the created clusters are 

confronted with observations and analysed. Bivariate modelling is used to estimate return periods 

of compound hazards events and discuss the influence of the intensity of extreme rainfall and 

extreme wind on the spatial and temporal scales of compound hazards events. 

 

Chapter 6: Summary, conclusion and future research directions provides a summary of the 

contributions and proposes future research directions. 
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Chapter 2: A Review of Quantification 

Methodologies for Multi-Hazard 

Interrelationships 

 

Summary:  

Globally and yearly, individual hazards and hazard interrelations have the potential to result in 

socio-economic losses. Here, in this critical review, we use grey- and peer-review literature to 

identify and compare current research available for the quantification of hazard interrelations, 

focussing on 14 different natural hazards. We first provide a historical context for quantitative 

single-hazard and multi-hazard assessment. We then construct a literature database with 146 

references related to multi-hazard interrelations. We use our literature database to identify trends 

for hazard interrelation and multi-hazard and from these group hazard interrelations into five 

types: triggering, change condition, compound, independence and mutually exclusive. Our critical 

review identifies 19 different modelling methods to quantify natural hazard interrelationships 

which we cluster into three broad modelling approaches: stochastic, empirical, and mechanistic. 

We then synthesize results of our classification of quantification methods for hazard 

interrelationships and using two matrices illustrate this in practice for 24 different interrelations 

between 14 natural hazards (out of 196 possible interrelations), one for cascading hazards 

(temporal order in the multi-hazard event) and one for compound hazards (two or more hazards 

acting together). Finally, we provide examples of applications for each of the three quantitative 

modelling approaches defined. We believe that this review will lead to a better understanding of 

quantification methodologies for hazard interrelations between different sub-disciplines that 

focus on natural hazards, thus aiding cross-disciplinary approaches for better understanding 

potential risk related to multi-hazard events.  

 

 

 

 

 

*Published in Earth-Science Reviews in September 2019. Minor edits have been made to ensure 

consistency in reference style and language with the rest of the thesis. The substance of the chapter 

remains unchanged from the originally published paper, except for the addition of an afterwards. 

 

Tilloy, A., Malamud, B. D., Winter, H. and Joly-Laugel, A.: A review of quantification 

methodologies for multi-hazard interrelationships, Earth-Science Rev., 196, 102881, 2019. doi: 

10.1016/j.earscirev.2019.10288. 
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 Introduction 

In this chapter, we review quantification methodologies for the interrelations between different 

natural hazards. Here, the term hazard will follow the definition by UNDRR (2017), which refers 

to a natural hazard (hereafter referred to as a ‘hazard’) as a natural process or phenomenon that 

may have negative impacts on society. The magnitude of the hazard is one component of risk 

(hazard, exposure and vulnerability) (UNDRR, 2017). When a high intensity of a natural hazard 

is encountered, the word extreme is often used to describe these events. The limitations of single 

hazard studies have been highlighted in the past decade (e.g., Kappes et al., 2012a; Gill and 

Malamud, 2014; Terzi et al., 2019). Indeed, the interaction of different hazards can lead to an 

impact that is greater than the sum of the single hazard effects (Terzi et al., 2019). When dealing 

with more than one hazard at a time the terms multi-hazard and compound hazard (or compound 

event), the focus of this review, are often used (Kappes et al., 2012b; Seneviratne et al., 2012; 

Leonard et al., 2014). The term compound hazard is sometimes encompassed within multi-hazard 

(e.g., UNDRR, 2017); moreover, the term compound hazard is also frequently used for weather 

and climate-related hazards (Seneviratne et al., 2012; Zscheischler and Seneviratne, 2017). 

 

When considering natural hazards (e.g., landslides, earthquakes, tsunami), each hazard can be 

linked to other hazards or processes, resulting in the phrase ‘multi-hazard’, which has a strong 

link with the term multi-risk in numerous studies (e.g., Greiving et al., 2006; Kappes et al., 2012a, 

2012b; Marzocchi et al., 2012; Gallina et al., 2016; Terzi et al., 2019). Gill and Malamud (2014) 

considered four steps of a multi-hazard framework, in which the first step is a multi-layer hazards 

approach (Gill and Malamud, 2014), where interrelations are not really considered, and hazards 

are superposed in a region. Other examples of a multi-layer hazards approach in a region include 

Grünthal et al. (2006), Tarvainen et al. (2006) and Orencio and Fujii (2014). The other three steps 

of the multi-hazard framework of Gill and Malamud (2014) go further to include hazard 

interactions (interrelationships), coincident hazards and hazard vulnerabilities, with their work 

focussing on hazard interactions in a multi-hazard framework context. In this review, we will 

focus specifically on hazard interrelations within the broader context of multi-hazard frameworks.  

 

As shown later in this review, the interest around events that include multiple natural hazards (or 

multi-hazard events) has been growing since the beginning of the 21st century. The methods and 

approaches to tackle multi-hazard vary between different natural hazard communities (e.g., 

geophysical vs. hydrological vs. atmospheric hazard communities). A comprehensive multi-

hazard approach could also enhance other disciplines such as forecasting and early warning or 

climate change studies. There are several challenges associated with quantifying multi-hazard 

interrelationships which this work aims to tackle, including the following:  
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(i) Fragmentation of literature in the field, with a challenge that a wide variety of terms are 

used to define hazard interrelationships (e.g., cascade, interaction, compound) (Pescaroli 

and Alexander, 2018). 

(ii) Gaps in the multi-hazard approaches taken by different institutions (e.g., single hazards 

layered without considering interrelationships vs. holistic multi-hazard approaches which 

include interrelationships and dynamic vulnerability) (Gill and Malamud, 2014, 2016). 

(iii) The complexity of multi-hazard events and how to address a deterministic equation-based 

(theoretical) understanding which might apply to ‘all’ events that are similar vs. a case 

study based empirical understanding which might be applicable just to a given scenario 

of a specific event (Geist et al., 2009; Catane et al., 2012; Bout et al., 2018; Kumbier et 

al., 2018).  

 

We believe there is a need to not only study case studies inclusive of multi-hazard 

interrelationships but to generalize to more inclusive frameworks that apply to a broad range of 

hazards and locations. In this chapter, we propose what we consider is a more general and 

inclusive framework based on a systematic review of quantitative methods and terminology in 

the broader multi-hazard literature. We believe this will be useful for those responsible for hazards 

in given regions to put into context methods being used more generally globally. This can be done 

by applying methods that are not yet applied to certain hazard interrelations or by studying 

interrelations that have not yet been quantified. This review is focused on reviewing modelling 

methods for quantifying hazard interrelations; whereas, previous studies have focussed on either 

documenting qualitative interrelationship between natural hazards or the modelling methods 

alone (Kappes et al., 2012a; Gill and Malamud, 2014; Hao and Singh, 2016; Hao et al., 2018; 

Terzi et al., 2019). The different classifications and hazard interrelations matrices developed in 

this review, combined with an extensive literature database (see Appendix A) offer tools and 

keys to understand the main challenges of quantifying natural hazards interrelations.  

 

Many regions in the world are prone to events that include more than one natural hazard, with 

interrelationships between the hazards that occur over the same location during the same period 

(Gill and Malamud, 2014; Leonard et al., 2014). We call these events multi-hazard events. These 

are usually based on physical phenomena (e.g., thunderstorm, mid-latitude cyclone). Examples 

of these include the following: 

(iv) In 2010, storm Xynthia hit the west coast of France. The storm itself was not particularly 

extreme for the season but the coincidence of extreme wind, high tides, storm surge and 

the fact that the soils were already saturated led to huge damage (CCR, 2017).  

(v) In winter 2014, the UK experienced a succession of major storms that led to severe 

damage due to wind, flooding and avalanches in Scotland (Met Office, 2015).  
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(vi) In 2011, the Great North East Japan earthquake and resultant tsunami had devastating 

consequences (Davis, 2016; Kumasaki et al., 2016). 

(vii) In 2018, Wildfires in California increased the severity of flash floods 

(AghaKouchak et al., 2018).  

These four multi-hazard events all include multiple natural hazards that are interrelated (in 

different ways), with the events developing on a given region within a period. 

 

In this critical review, we used as evidence a hazard interrelationship literature database consisting 

of 146 references from the peer- and grey-literature. This review aims to be representative of the 

current state of modelling interrelationships between natural hazards. In addition to discussing 

strengths, weaknesses, and commonalities of multi-hazard quantification approaches, we include 

background on selected diverse modelling methods that are used for multi-hazard modelling. 

Although we believe our review is representative of the broader literature on multi-hazard, it is 

not intended to be inclusive of every work or every quantitative approach relating to multi-hazard 

from the 1980s to when this chapter is written.  

 

This critical review article is organized as follows. We first (Section 2) present a literature 

database built in the context of this review and three subgroups of this database: (i) terminology 

around multi-hazard and compound events, (ii) interrelationship types for natural hazards, (iii) 

natural hazards interrelationships. We then present (Section 3) different models used in the 

scientific community to quantify relationships between two and three natural hazards, including 

some practical examples. We finish (Section 4) with discussion and conclusions. 

  



 A Review of Quantification Methodologies for Multi-Hazard Interrelationships  

Page 35 

 Construction of a hazard interrelationship literature database 

We first created a multi-hazard interrelationship literature database with three main objectives:  

(i) To encompass the broadest possible number of terms and approaches for multi-hazard 

assessments.  

(ii) To understand different possible interrelations between natural hazards  

(iii) To focus on quantitative methods for hazard interrelations.  

 

To construct this database, we searched for relevant peer-reviewed references in the Web of 

Science™ online platform and Google Scholar™ using keywords and Boolean search criteria. 

We also considered in Google Scholar™ conference proceedings, grey literature (e.g., 

government, technical, and project reports), and PhD dissertations. After a preliminary iterative 

approach of a couple of dozen references to decide on keywords, we used the following keywords 

(with appropriate inclusion of plural and other derivatives where appropriate): “multi-hazard”, 

“compound”, “hazard”, “dependence”, “cascade”, “multi-risk”, “model”, “probability”. The 

keyword searches we did were not systematic but rather used combinations of these keywords, 

combined with some searches that added specific terms for natural hazards (see Section 2.2.3), 

to gain a representative sample of papers in the literature that addressed the three objectives given 

above.  

 

Our final literature database consisted of 146 references from 83 sources for a 38-year period 

(1980‒2018). Amongst the 146 references, 84% are peer-reviewed scientific journal articles, 6% 

are reports from projects or institutions, 5% are books, 4% are conference proceedings and 1% 

are PhD theses. This database is the material for our analysis and is available in Table A1. In 

Figure 2.1, violin plots are used to display the distribution of articles over time for those nine 

journals in the multi-hazard database with ≥3 articles.  
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Figure 2.1: Journals in terms of the number of articles listed in our multi-hazard literature database of 146 

references and as a function of year. Shown are the 9 journals (out of 83 in the database) which have 3–13 

articles, ranked from most articles (journal Natural Hazards with 13 articles) to fewest articles (Hydrology and 

Earth System Sciences with 3 articles). Each journal is represented by a violin plot showing the smoothed number 

of publication per year, 1980 to 2018. The green to red colour (legend) within bars shows the number of articles 

for that journal. A category for ‘Others’ references is displayed as the bottom-most violin plot, in grey, and is 

comprised of 10 sources with 2 references each and 64 sources with 1 reference each (84 references from 74 

sources). Small circles within each violin plot represent the mean year of publication for each source.  

In our literature review database, those journals the most represented include Natural Hazards (n 

= 13), Natural Hazards and Earth System Sciences (n = 6), Coastal Engineering (n = 5), Nature 

(n = 4), and Geomorphology (n = 4). One can speculate that the variety of hazards studied in these 

journals might also require a variety of methods to quantify their interrelations. We can also note 

the growing interest in fields related to multi-hazard from the late 1990s.  

 

As we are interested in terminology around multi-hazard, hazard interrelations and methodologies 

for quantifying these interrelations, this database is divided into three interrelated subgroups 

which we illustrate in:  

(iv) Terminology subgroup comprises those 85 references that contain terms related to multi-

hazard: {(multi-hazard*) OR [compound AND (event* OR flooding OR extreme*)]}. 

This subgroup will be used to analyse the terminology around multi-hazard in Section 

2.2.1.  

(v) Interrelation type subgroup comprises 4 references that classify different types of 

interrelations between natural hazards and we will use in Section 2.2.2 to define five 

types of interrelations between hazards that will be used in this chapter. 

(vi) Models subgroup, comprises 70 references that examine interrelations between natural 

hazards in a quantitative way, focusing on possible interrelations between 14 natural 
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hazards that we selected following different criteria. This is discussed further in Section 

2.2.3.  

 

Figure 2.2: The 146 references in our multi-hazard literature database divided into three subgroups of literature 

(and their overlaps) which we will discuss in Section 2.1 (Terminology), Section 2.2 (Interrelation types) and 

Section 2.3 (Models). Numbers and size of circles correspond to the number of references. 

 Terminology in the context of multi-hazard, compound hazard, and hazard 

interrelations 

Multiple hazards have been studied in different contexts and by different research communities 

(e.g., Kappes et al., 2012b; Leonard et al., 2014; Hao et al., 2018). In the introduction, we referred 

to some sources that are widely used (e.g., UNDRR, 2017) that define compound hazard as a sub-

group of the term ‘multi-hazard’. However, as we explored our literature from Figure 2.2, two 

broad streams of studies were found: those using the word multi-hazard and others using the word 

compound hazard (with some overlap). There was a loose correlation of study foci with the words 

used, with multi-hazard tending towards those studies to do with solid earth and surface process 

hazards, and compound hazard to do with those hazard related studies in hydrometeorology. We 

will below develop the terminology around these approaches, focussing on these two streams, 

multi-hazard and compound hazard.  

 

The terms multi-hazard and compound hazard have a broad range of interlinked and overlapping 

definitions, of which we give a couple of examples here. For example, a multi-hazard approach 

accounts for different probabilities and intensities of multiple hazards (Eshrati et al., 2015). A 

general definition for a compound hazard events has been given by the IPCC SREX (Seneviratne 

et al., 2012) and also given and discussed by Leonard et al. (2014, p. 115) as “an extreme impact 

that depends on multiple statistically dependent variables or events”. Eshrati et al. (2014) 

distinguished between compound hazard and multi-hazard, stating the following (p. 79): 

“While compound hazards are characterized as ‘several elements acting together above 

their respective damage threshold’, multi-hazard are characterized as ‘elements of quite 
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different kinds coinciding accidentally, or more often, following one another with 

damaging force’ ”.  

Hewitt and Burton (1971) and more recently Kappes et al. (2012) and Eshrati et al. (2014) 

highlighted that the terms multi-hazard and compound hazard correspond to the two main 

mechanisms to characterize hazard interrelations.  

 

Previous studies have highlighted the abundance of terms to qualify hazard interrelations (e.g., 

Kappes et al., 2012b; van Westen and Greiving, 2017). The profusion of terminologies and 

definitions makes it hard to find a generally accepted definition of a multi-hazard. Moreover, 

some terms are linked and part of the same conceptual framework. Here we did an extensive 

review of the available literature to find patterns in the use of particular terms to define hazard 

interrelations within the context of multi-hazard and compound hazard. 

 

To offer a better understanding of the terminology around multi-hazard and compound hazard, 

we first listed terms that are used to represent hazard interrelations. To do this, we relied on 

previous reviews on multi-hazard which already gathered terms to describe relations between 

hazards (Kappes et al., 2012b; Gill and Malamud, 2014; Leonard et al., 2014; van Westen and 

Greiving, 2017; Pescaroli and Alexander, 2018). Selected terms are displayed in Figure 2.3.  

 

For the 146 references in our literature database, we searched each of the documents for those 

containing the keywords {(multi-hazard*) OR [compound AND (hazard* OR extreme* OR 

event* OR risk*)]}. We performed this selection using the software Mendeley™ which performs 

word searches within the entire PDF file of each reference. Among the 146 sources in our 

database, 85 (59%) fulfilled these conditions. By doing this selection we include different sources 

aiming to deal with the broad issue of multi-hazard. Amongst these 85 sources, 66 (77%) contain 

the word “multi-hazard” and 29 (35%) the word “compound” (of these 66 and 29 sources, ten of 

them contain both terms). The term multi-hazard is more frequently used than compound hazard. 

In our literature database, the term “compound AND (event OR extreme OR hazard)” was first 

mentioned in 2012 (Lavell et al., 2012), while the use of the term “multi-hazard” is more 

established (first mention in 2002) (van Westen et al., 2002). Moreover, as was discussed above, 

these terms are complementary to defining hazard interrelationships.  

 

Our next step was to study the distribution of terms used to define hazard interrelations among 

these two terminology streams (multi-hazard and compound hazard). Terms we looked for in both 

streams include the following: cascade, chain, interaction, interrelation, dependence, 

combination, multivariate, domino, trigger, coincidence, amplification. As discussed in the 

introduction to Section 2.2.1, these words were selected from previous works on multiple hazards 

(Kappes et al., 2012b; van Westen and Greiving, 2017; Pescaroli and Alexander, 2018) and were 



 A Review of Quantification Methodologies for Multi-Hazard Interrelationships  

Page 39 

considered the most relevant. Figure 2.3 displays the results of this analysis in a treemap, with 

the green (left) representing percentage results of those interrelationship terms within multi-

hazard (MH) and orange (right) those within the compound hazard (CH).  

 

Figure 2.3: Treemap of multi-hazard and compound hazard terminology used in 85 sources to describe and 

quantify hazard relationships. This treemap chart shows the proportion of use of terminology used in our multi-

hazard literature database. Terms are grouped in two literature streams which correspond to “multi-hazard” 

(green, 66 references) and “compound hazard” (orange, 29 references), noting that ten of the references have 

both words so are included (repeated) in the green and orange parts. Each of the 85 sources within the two 

terminology streams of multi-hazard and compound hazard was examined for word use, within some cases a 

given reference using greater than one of the words (sum of all values is >100%). 

 

From Figure 2.3 we can see that the terms “interaction”, “dependence” and “combination” are 

the most widely used in both frameworks (each term is used in 53–73% of all references in the 

MH or CH frameworks). The terms “trigger” and “cascade” are more often used within the MH 

framework (trigger: 56% in MH vs. 30% in CH; cascade 52% in MH vs 30% in CH). This 

contrasts with the terms “multivariate” and “coincidence” which are more associated with the CH 

terminology stream (multivariate: 8% MH vs 47% CH; coincidence: 20% MH vs 33% CH). This 

highlights the differences between the multi-hazard (MH) and compound hazard (CH) streams, 

and how they do not refer to the same physical processes. Differences in terminology have to do 

with disciplines and the modelling methods to quantify interrelations as will be shown in Section 

2.3.  

 

Figure 2.3 also shows that the term “interrelation” is equally used (17%, i.e. one in six references) 

for both MH and CH. We consider interrelation to be a neutral term, equally used in both MH and 

CH. This analysis of the terminology shows that (i) some authors refer to compound hazard events 

as distinct from multi-hazard, and that (ii) authors who refer to compound hazard events do not 

always choose the same terms to define hazard interrelations. 
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 Interrelationships between hazards 

After defining two different terminology streams (multi-hazard and compound hazard) and 

analysing the terminology around hazard interrelations (Section 2.1), in this section we review 

different ways of classifying hazard interrelations, using the terminology previously presented. 

Some authors classify hazard interrelations for different purposes. Gill and Malamud (2014) 

defined four interrelation types which they built on a critical review of >200 references, including 

many case studies. Decker and Brinkman (2015) defined three different interrelation types 

between natural and human-made hazards in the context of the project ASAMPSA_E (Advanced 

Safety Assessment Methodologies: Extended PSA) focusing on hazards posing potential threats 

to nuclear installations and their possible correlations. Liu et al. (2016) did a systemic 

classification of hazard interrelations based on characteristics of the hazard-forming environment 

defining four different types which they expressed in probabilistic terms. Finally, van Westen and 

Greiving (2017) consider four types of hazard relationships based on previous research. The 

interrelation types within each of the four references are given in Table 2.1. 
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Table 2.1: Four different interrelation classifications for natural hazards from different sources. Each reference 

has a letter (A, B, C, D) and each interrelation type has a number (1, 2, 3, 4). 

Article Interrelation type 

A. Gill and 

Malamud 

(2014) 

(A1) Interactions where a hazard is triggered: One hazard triggers one (or 

more) other hazard(s). 

(A2) Interactions where the probability of a hazard is increased: One 

hazard changes environmental parameters that move towards an increase in 

the likelihood of another hazard. 

(A3) Interactions where the probability of a hazard is decreased: One 

hazard changes environmental parameters that move towards a decrease in 

the likelihood of another hazard. 

(A4) Events involving the spatial and temporal coincidence of natural 

hazards: Two hazards are independent and occur simultaneously by 

coincidence. 

B. Decker and 

Brinkman 

(2015) 

(B1) Causally connected hazards: When one hazard may cause another 

hazard; or when one hazard is a prerequisite for a correlated hazard. 

(B2) Associated hazards: Hazards which are probable to occur at the same 

time due to common root causes. 

(B3) Combinations of independent phenomena: Two hazards are 

independent. 

C. Liu et al.  

(2016) 

(C1) Independent relationship: Two hazards are independent. 

(C2) Mutex relationship: Two hazards cannot occur together; their trigger 

factors are mutually exclusive. 

(C3) Parallel relationship: Two hazards depend on the same trigger factors. 

(C4) Series relationship: One hazard triggers another hazard. 

D. van Westen 

and Greiving  

(2017) 

(D1) Independent events: Two hazards are independent. 

(D2) Coupled events: Two hazards are triggered by the same triggering 

event. 

(D3) One hazard changes the conditions for the next.  

(D4) Domino or cascading hazard: One hazard causes the next.  

 

In these four references that examined interrelationship classifications (Table 2.1), the same 

processes are described in different ways with different terms. Moreover, it is possible to find 

bridges in-between these classifications. For example, triggering interaction (A1) is equivalent 

to causally connected hazard (B1), series relationship (C4) and cascading hazard (D4). From 

these different classifications we can highlight five different interrelation types: independence, 

triggering, change conditions, compound hazard, mutual exclusion. These are summarized in 

Table 2.2 along with the reference and interrelation type from Table 2.1. 
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Table 2.2: Five interrelation types as synthesized from the four references (A to D) presented in Table 2.1 and 

used in this review. 

Interrelation type 

A. Gill and 

Malamud 

(2014) 

B. Decker and 

Brinkman (2015) 

C. Liu et al. 

(2016) 

D. van Westen 

and Greiving 

(2017)  

I. Independence ✓ ✓ ✓ ✓ 

II. Triggering ✓ ✓ ✓ ✓ 

III. Change 

condition 
✓   

✓ 

IV. Compound 

hazard 
 

✓ ✓ ✓ 

V. Mutual exclusion ✓  
✓  

 

Here we described in detail each of these five interrelation types, along with case-study examples 

of each interrelation type: 

− I. Independence (A4, B3, C1, D1): Coincidence between hazards can occur. It implies a 

spatial and temporal overlapping of two (or more) hazards without any dependence or 

triggering relationship. It is equivalent to the independent relationship in Liu et al. (2016) 

and van Westen and Grieving (2017) and the spatial-temporal coincidence in Gill and 

Malamud (2014). An example is the 2010, Pacaya volcanic eruption and tropical storm 

Agatha which hit the Pacific coastline of Guatemala almost simultaneously, leading to 

exacerbated damages due to ash blocking drainage system of rainfall triggering lahars 

(Gill and Malamud, 2014). We also include in this category cases where two (or more) 

hazards develop over  the same area, independently, at different times (e.g., cyclone 

occurring a few weeks after an earthquake).  

− II. Triggering (Cascading) (A1, B1, C4, D4): Implies a primary and a secondary hazard. 

As explained by Gill and Malamud (2014), any natural hazard might trigger zero, one or 

more secondary natural hazards (Tarvainen et al., 2006; De Pippo et al., 2008; Kappes et 

al., 2012b; Marzocchi et al., 2012). The secondary natural hazard might be identical or 

different from the primary hazard. As an example, an earthquake might trigger landslides, 

which may create a natural dam on rivers. The breaking of landslide dams can trigger a 

flood, resulting in a hazard cascade (Catane et al., 2012).  

− III. Change conditions (A2, D3): This relates to one hazard altering the disposition of a 

second hazard by changing environmental conditions. This phenomenon has been 

discussed in previous papers (Kappes et al., 2010; Catane et al., 2012). One of the reasons 

is its variable temporal scale, for example, a wildfire might denude an area of vegetation 
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and harden the soil thus amplifying the strength of floods through increasing over ground 

flow and result in a debris flow (Canon et al., 2007). A wildfire can have a non-negligible 

influence on soil infiltration up to one year after its occurrence (Shakesby and Doerr, 

2005). For example, in Las Conchas in New Mexico in 2011, a wildfire charred more 

than 150 000 acres leading to an increased flood one month later (FEMA, 2012). There 

is a similar issue with river flooding amplified by landslides (Costa and Schuster, 1988).  

− IV. Compound hazard (association) (B2, C3, D2): In this interrelation, different hazards 

are the result of the same “primary event”, or large scale processes (Mazas and Hamm, 

2017) which are not necessarily hazards. In this case, there is not a primary and a 

secondary hazard as the different hazards occur simultaneously. As an example, the co-

occurrence of river flooding and sea surge could be the result of the same large-scale 

process (tropical cyclone, mid-latitude cyclone) (Bevacqua et al., 2017; Dowdy and 

Catto, 2017). The two hazards are considered as dependent and form a multi-hazard event 

called compound flooding (Klerk et al., 2015; van den Hurk et al., 2015; Wahl et al., 

2015; Moftakhari et al., 2017). Depending on the scale we focus on this dependence can 

be almost instantaneous or lagged. Therefore, Klerk et al. (2015) found a statistical 

dependence between extreme discharge on the Rhine river and extreme sea level at its 

outlet into the North Sea, but with a 6 days lag time. This can be explained by the size of 

the Rhine catchment. Moreover, some other dependencies are spatially and temporally 

closer, such as the dependency between lightning activity and hail occurrence (Lang and 

Rutledge, 2002; Carey et al., 2003).  

− V. Mutual exclusion (negative dependence) (A3, C2): Two natural hazards can also 

exhibit negative dependence or be mutually exclusive. There is limited literature because 

a negative dependence of two hazards does not lead to an increased impact, which is the 

case for positive dependence. There are many examples of hazards that show negative 

dependence, often hydrometeorological (e.g., heavy rain and fire). However, such 

negative dependence is often on a particular spatial and/or temporal scale. For example, 

within a tropical cyclone, both extreme wind and lightning are likely to occur but Molinari 

et al. (1999) shown that the extremes of these two hazards occur in different parts of the 

cyclone. On the scale of the whole cyclone, those two hazards are positively dependent, 

but on a narrower scale, they appear to not occur in an extreme way together.  

 

We will use these five interrelation types (independence, triggering, change condition, compound 

hazard, mutual exclusion) in the rest of this chapter. Moreover, a focus has been put on triggering 

(type II), change condition (type III) and compound hazard (type IV) in Section 4.2 as these 

interrelations are of greater interest compared to independence and mutual exclusion (Kappes et 

al., 2012a; Gill and Malamud, 2014; Decker and Brinkman, 2015; Mignan et al., 2016).  
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 Natural hazard interrelations models database 

To select relevant hazards for our analysis we first referred to previous reviews on hazard 

interrelationships (Gill and Malamud, 2014; Decker and Brinkman, 2015) where they give 

qualitative information about natural hazard interrelations with matrices. Gill and Malamud 

(2014) present a matrix of potential interactions between 21 different natural hazards while the 

one realized for the ASAMPSA_E project by Deker and Brinkman (2015) contains 70 natural 

hazards (many sub-categories of those given by Gill and Malamud, 2014).  

 

We use three selection criteria for the natural hazards we choose to focus on, such that they would 

be a diverse and representative range. These selection criteria loosely informed our list of 14 

natural hazards and were as follows: (i) those hazards that caused past recorded impact (disasters) 

in Europe; (ii) hazards prone to have interrelations with at least one other natural hazard; (iii) 

hazards that can be quantified with one (or a small set) of environmental variables. The hazards 

and categories we use further below are not exclusive, and other studies might choose other 

hazards to focus on, or classify a given hazard type into two different (more relevant) types.  

 

Our first criteria that helped to loosely inform our final list of diverse hazard types is past recorded 

impact to Europe. To do this we used the Emergency Events Database (EM-DAT) a record of 

disasters maintained by the Centre for Research on the Epidemiology of Disasters (CRED, 2018). 

EM-DAT contains data on the occurrence and effect of over 14,600 disasters (as of 2018) in the 

world from 1900 to present. There are several criteria for a disaster to be included in the dataset, 

including ≥ 10 people died or ≥100 people affected or declaration of a state of emergency or a 

call for international assistance (CRED, 2018) Despite its recognition, the quality of this disaster 

database faces biases (e.g., threshold biases, spatial aggregations) discussed by Jonkman (2005) 

and Gall et al. (2009). 

 

With these biases in mind, we extracted disaster profiles in Europe from EM-DAT (CRED, 2018) 

over the period 1900 to 2018. The distribution of natural disasters from this database is displayed 

in Figure 2.4. The corresponding natural hazards that resulted in these disasters include 

earthquakes, hazards related to convective storms (lightning, extreme wind, hail, extreme rainfall, 

river flooding), extra-tropical cyclones (sea surge, extreme waves, coastal flooding, extreme 

wind, extreme rainfall), extreme temperature (heatwave, cold wave), drought, forest fires and 

snow avalanches.  
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Figure 2.4: Occurrences of 14 disaster types in Europe in the period 1900-2018. Data from CRED (2018). 

Most of the hazards resulting in the disasters shown in Figure 2.4 can be expressed with 

environmental variables and, as it will be shown in Section 3, are suitable for modelling. Two 

hazards from Figure 2.4 we do not include are snow avalanches and wildfires. Snow avalanches, 

despite their destructive power and their relevance for Europe, are difficult to model regarding 

their interrelations with other hazards. Wildfires have a complex link with other hazards such as 

drought, extreme temperature, lightning and floods (Myers and Van Lear, 1998; Littell et al., 

2016; AghaKouchak et al., 2018). However, the multiplicity of possible combinations leading to 

a fire outbreak are beyond the scope of this study focusing on interrelations between two hazards, 

so they are also excluded. From the natural disasters in Figure 2.4 and our selection criteria, we 

selected 14 natural hazards (Table 2.3).  

 Table 2.3: A list of 14 single natural hazards considered in this chapter broken up into geophysical, atmospheric 

and hydrologic natural hazard categories 

 

Based on 14 natural hazards from Table 2.3, there are 196 interrelationship pairs possible, if each 

hazard can potentially interact with another hazard of the same type. For example, an earthquake 

might trigger a landslide, but also an earthquake can increase the probability of another earthquake 

1. GEOPHYSICAL 2. ATMOSPHERIC 3. HYDROLOGICAL 

1.1 Earthquake 2.1 Lightning 3.1 Sea surge 

1.2 Landslide 2.2 Extreme rainfall 3.2 Extreme waves 

1.3 Volcanic eruption 2.3 Extreme wind 3.3 River Flood 

  2.4 Extreme temperature 3.4 Tsunami 

  2.5 Hail 3.5 Drought 

  2.6 Tornado   
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occurring. In our multi-hazard literature database, 70 of the references are to do with 

interrelationship case studies relevant to the hazards given in Table 2.3. Note that there was an 

iterative process in our methodology for those references included in the final literature database, 

in that after the database was initially compiled, the hazards to be studied were decided upon 

(above) and then additional references to do specifically with those hazards given in Table 2.3 

were added.  

 

We will now use the 70 references from our multi-hazard literature database in combination with 

the 14 natural hazards given in Section 2.3 to examine in detail different methodologies for the 

quantification of hazard interrelationships. 
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 Methodologies for quantifying hazards interrelations 

This section focuses on hazard interrelation modelling and quantification, particularly for pairs of 

hazards. In this section, we are interested in (i) how different disciplines quantify hazard 

interrelations and (ii) creating a grouping of these different methods into an overall framework. 

Literature is used here as evidence for this task and includes 70 references (See Figure 2.2 and 

Appendix B Table B1) which each have an aspect of quantification between two given hazards. 

In Section 2.3.1 we give a representation of current knowledge related to hazard interrelation 

modelling through two matrices. In Section 2.3.2, the main models for quantifying hazard 

interrelationships are presented with examples of applications to natural hazard interrelations. 

Finally, in Section 3.3, the applicability of the modelling approaches to different types of hazard 

interrelations and categories of natural hazards are discussed. 

 Natural hazard interrelations matrices 

We now use the 14 hazards selected in Section 2.3 and displayed in Table 2.3, combined with 

evidence from our natural hazard interrelations models database (Appendix B Table B1), to 

create two hazard interrelations matrices (see Table 2.2 and Section 2.2.1 for further discussion 

of terminology):  

(i) cascading hazards (Figure 2.5): two hazards that occur sequentially in time where one 

hazard triggers or changes the conditions of another secondary hazard; 

(ii) compound hazards (Figure 2.6): two statistically dependent hazards occurring 

simultaneously at the same location. 

(iii)  These matrices (Figures 2.5 and 2.6) display the types of interrelation between hazards 

(Section 2.2.2), and the category of model used in the literature to quantify the 

interrelations (we have divided these broadly into stochastic S, empirical E and 

mechanistic M). For example, extreme rainfall triggers or changes conditions for 

landslide and this interrelation has been modelled with empirical and mechanistic models. 

We will later (Section 2.3.2) give a much more detailed view and classification of the 

different interrelation modelling approaches.  



 A Review of Quantification Methodologies for Multi-Hazard Interrelationships  

Page 48 

 

Figure 2.5: Cascading hazard interrelation matrix for the considered hazards in this study. Matrix-based on 70 

references and the modelling approach applied. This figure shows the type of interrelations between hazards 

when there is a sequential effect – from hazard A to hazard B – and the modelling methods which are used for 

each pair of hazards. The colours of the cells represent the interrelation types: green for triggering, purple for 

amplification; cells in grey represent non-sequential interrelations (see Figure 2.6) and white cells (with ‘?’) 

represent interrelations with debatable nature. The letters represent the interrelation type: S for stochastic, E 

for empirical and M for mechanistic. The numbers refer to the natural hazard category: 1.# for geophysical; 2.# 

for atmospheric and 3.# for hydrological. 
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Figure 2.6: Compound interrelation matrix for the considered hazards in this study. Matrix-based on 70 

references and the modelling approach applied. This figure shows the type of interrelations between hazards 

when there is a known association between hazards (compound hazards) and the modelling methods which are 

used for each pair of hazards. The colours of the cells represent the interrelation types: beige for known 

compound, light grey for no identified compound hazards (see Figure 2.5 for identified cascading hazards); and 

white cells represent interrelations with debatable nature. The letters represent the interrelation model: S for 

stochastic, E for empirical and M for mechanistic. The numbers refer to the natural hazard category: 1.# for 

geophysical; 2.# for atmospheric and 3.# for hydrological. 

The cascading hazards matrix presented in Figure 2.5 displays relationships when one hazard 

triggers another (e.g., earthquake triggers a landslide) or when one hazard changes the conditions 

for another (e.g., earthquake increase the probability of landslide by reducing the soil cohesion). 

Both interrelation types imply one primary (earthquake) and one secondary hazard (landslide) as 

they were defined by Gill and Malamud (2014) in a matrix they constructed. In Figure 2.5, the 

matrix hazard A is always prior (in time) to hazard B. Hazard interrelations that are not sequential 

are not considered and some interrelations are still debatable according to the literature. For 
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example, the relationship between earthquake and flood is still not clear. From the (14 ×14) = 196 

interrelationship pairs possible in the Figure 2.5 matrix, we have indicated 33 where there is a 

potential cascading relationship, of which 13 are both triggering & change condition (purple & 

green), 7 triggering (green), 5 change condition (purple), and 8 ‘debatable’ (white). These were 

identified from the work of Gill and Malamud (2014), Decker and Brinkman (2015) and Mignan 

et al. (2016). We then looked for quantification relationships (an iterative process within the 

construction of our natural hazard interrelations model database) and for 12 of the cells in Figure 

2.5 we found quantification studies relating one hazard with another (indicated by S, E, M in the 

matrix), which we will discuss in greater depth in Section 3.3.3. 

 

The same 14 hazards as in Figure 2.5 are presented in Figure 2.6, but in this case, there is no 

temporal or causal relationship between hazards, therefore only 105 interrelationships (cells) are 

possible. Every hazard might be associated with another hazard (compound hazard), but in the 

literature, some compound interrelationships are more likely to occur. In Figure 2.6, cells are 

identified that are: (i) (26 cells) compound (where a statistically significant dependent relationship 

has been identified in the literature), (ii) (11 cells) where the relationship is debatable in the 

literature. The remaining 68 cells (grey) have not been identified as having a definite compound 

hazard relationship in the literature. Although a compound hazard relationship might not exist 

(Figure 2.6), a cascading hazard might exist (Figure 2.5). Of the compound cells identified, 12 

have been marked (using our interrelationship database) with a specific model approach using 

letters S, E, or M. When natural hazards are compound (associated or statistically dependent), 

they are likely to occur together because they depend on the same precursory factors. Liu et al. 

(2016) defined trigger factors that induce hazards and control the frequency and magnitude of 

hazards. Because of the statistical dependence of compound hazards (e.g., extreme wave and sea 

surges), they have been widely studied with stochastic models (see Section 2.3.2) (Hawkes et al., 

2002; Dong et al., 2015; Rueda et al., 2016; Petroliagkis, 2018). Moreover, lack of data and the 

short time range of available records have limited the use of stochastic methods for interrelations 

with hazards such as lightning or hail. Empirical methods are more commonly used to 

acknowledge or quantify relationships (Lang and Rutledge, 2002; Price and Federmesser, 2006; 

Schultz et al., 2011; Iordanidou et al., 2016). 

 Models and classification 

In this section, we present three hazard interrelation modelling approaches (stochastic, empirical, 

mechanistic, indicated by S, E, M in the matrices in Figures 2.5 and 2.6) which covers the14 

hazards we selected (Table 2.3). Here, by models, we mean statistical or numerical tools used to 

quantify hazard relationships. The idea behind this classification is to build a framework to clarify 

different quantification methods to deal with a range of hazard interrelations.  
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In Figure 2.7 we present these three different categories of models to quantify interrelations 

between natural hazards and their subcategories. This categorisation was built using the 70 studies 

in our natural hazard interrelations model database (Appendix B Table B1). For each of the 70 

studies, we pulled out the main modelling method(s) used to quantify hazard interrelationships 

and the types of hazards (where appropriate). We then used the overall evidence and categorized 

these. Our categorizations were inspired by classifications already made for hydrological models 

(Devia et al., 2015), dependence modelling in hydrology (Hao and Singh, 2016; Hao et al., 2018), 

landslide susceptibility models (Reichenbach et al., 2018) and more general overview on models 

in science (Frigg and Hartmann, 2012).  

 

 

Figure 2.7: Natural hazard interrelationship models: three different modelling approaches (I. stochastic, II. 

empirical, and III. mechanistic), six families (A. multivariate, B. copula, C. dependence measures, D. regressions, 

E. conceptual models and F. physical models) and 19 modelling methods. This classification is based on a review 

of 70 references from 1980 to 2018 (see Appendix B Table B1). 

 

Figure 2.7 gives an overview of the main modelling methods available for different types of 

interrelations. Three different modelling approaches are highlighted, within which there are 

model families (two for each modelling approach) which are subdivided into modelling methods. 

In total, for the 70 references (73 pairs of natural hazards) in our database, we recorded 79 unique 

uses of 19 different modelling methods, of which the stochastic modelling approach had 27 (34%) 

uses, empirical had 31 (39%) uses, and mechanistic 21 (27%) uses. For the stochastic approach, 

there are two families (A. multivariate and B. copula) and 7 modelling methods. For the empirical 

approach, there are three families (B. copula—shared with stochastic, C. dependence measures, 

D. regressions) and 9 methods. Finally, for the mechanistic approach, there are two families (E. 

conceptual models, F. physical models) and 3 methods. Later in Section 3.3, we give the number 

of uses (out of 79) for each modelling method. 

We shall now define the three main modelling approaches (stochastic, empirical, mechanistic). 

Because of the vast literature for each method, here we provide a concise explanation for each of 
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the six model families in Figure 2.7 with relevant linked literature and illustrate four methods 

with case studies. 

2.3.2.1 Approach I: Stochastic models 

We define stochastic models as models based on samples of different variables with random 

behaviour (Cox and Miller, 1965). In this category, we include all the methods with the generation 

of random data from statistical distributions. In Section 2.2.2 we presented different types of 

interrelationships between natural hazards, in case of compound events, there is usually a 

statistical dependency between different natural hazards. Stochastic models can model this 

statistical dependency between extreme environmental variables (e.g. extreme wind, extreme 

rainfall) (Ledford and Tawn, 1997; Yang and Zhang, 2013; Zheng et al., 2014; Ming et al., 2015). 

Methods presented in this category come from multivariate statistics and extreme value statistics 

(Tawn, 1988, 1990; Coles and Tawn, 1991, 1994; Nelsen, 2006; Gudendorf and Segers, 2010). 

One of the main strengths of these models is that they allow for extrapolation beyond the range 

of available data. Among stochastic models, we distinguish two model families: (i) copulas 

(which can also be empirical) and (ii) multivariate models (Figure 2.7). The main difference 

between these two families is that multivariate models include marginal modelling (i.e., 

modelling the distribution of each separate variable) while copulas solely focus on modelling the 

dependence structure (Hao and Singh, 2016). Stochastic models have been particularly used to 

model compound hazards (Figure 2.6) as they provide the joint probabilities of two hazard 

occurring at the same time. Conditional probability has also been used to model causal 

relationships (Liu et al., 2018). Stochastic models permit the estimation of joint probabilities of 

exceedance and return periods; these quantities are commonly required by engineers and decision-

makers.  

 

2.3.2.1.1 Copulas  

In a bivariate case, a copula is a joint distribution function which defines the dependence between 

two variables independently from the marginal distributions of these variables (Heffernan, 2001; 

Favre et al., 2004; Nelsen, 2006; Hao and Singh, 2016). See (Genest and Favre, 2007) for a good 

introduction to copulas. For two variables X and Y, any bivariate distribution function with 

marginal distribution functions FX(x) and FY(y) and the joint cumulative distribution function 

FX,Y(x,y) can be expressed as a copula in the following form (Nelsen, 2006): 

𝐹𝑋,𝑌(𝑥, 𝑦) =  𝐶{𝐹𝑋(𝑥), 𝐹𝑌(𝑦)} (2.1) 

where C is the copula function. Copulas are not limited to two variables and therefore equation 

(1) can be extended to higher dimensions. Several classes of copula with different properties are 

available (Joe, 1997; Favre et al., 2004; Nelsen, 2006). Copulae used in our literature database 

belong to one of the three following classes: Archimedean copulas, Gaussian copulas and extreme 

value copulas. Copulae are parametric models; indeed, each copula is suitable within a given 
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range of dependence structures. Without prior knowledge of the studied hazards, several copulae 

with different levels of complexity need to be fitted to the data and compared (Sadegh et al., 

2017). Using a copula which does not capture adequately the dependence structure between two 

variables can lead to either underestimation or overestimation of the joint probability of these two 

variables (Ledford and Tawn, 1997; Mazas and Hamm, 2017).  

 

2.3.2.1.2 Multivariate models 

Despite their theoretical relation to copulas (Tawn, 1990; Heffernan, 2001), multivariate models 

differ from copulas as they include margins in the modelling process (i.e. marginal distributions 

are usually fixed for a given model). Multivariate models are usually parametric (Ledford and 

Tawn, 1997) or semi-parametric (Heffernan and Tawn, 2004; Hao and Singh, 2016). Among 

multivariate models, parametric models developed for the characterization of bivariate extreme 

value distributions have been the most used to investigate hazard interrelations (Gumbel, 1961; 

Yue, 2000; Zheng et al., 2013). The conditional extreme model (Heffernan and Tawn, 2004) has 

the particularity of estimating the dependence structure between two variables conditioned on one 

being extreme. A joint tail model requires all variables to become large at the same rate; this can 

be problematic when looking at compound events where not all the variables are extreme 

(Leonard et al., 2014; Liu et al., 2018). Parametric multivariate models have the same limitations 

as copula models as they can typically handle only one form of extremal dependence. However, 

semi-parametric models such as the conditional extremes model are more data-driven, offering 

more flexibility at the price of a higher sensitivity (e.g. leading to different results with different 

datasets even when modelling the same processes) (Winter, 2016).  

 

2.3.2.1.3 Example of stochastic approach: Estimation of the joint probability of 

extreme rainfall and sea surge 

The interrelation between extreme rainfall and sea level is of primary interest when studying 

coastal flooding. Indeed, high sea levels prevent the flow of excess water due to extreme 

precipitations toward the open sea (Zheng et al., 2013; Klerk et al., 2015; van den Hurk et al., 

2015). The quantification of the interrelations between these two hazards has previously been 

done using stochastic models (Figure 2.6). As both hazards are related to stormy weather 

conditions (e.g., cyclonic systems) (Zheng et al., 2013) this interrelation has been quantified 

through the estimation of joint probabilities of occurrence (Lian et al., 2013; K. Xu et al., 2014; 

Zheng et al., 2014; Klerk et al., 2015). Lian et al. (2013) looked at the joint probability of extreme 

rainfall and sea surge in Fuzhou City, China for the years 1952 to 2008. The dependence structure, 

and therefore the joint probability of rainfall and sea level exceeding extreme levels was assessed 

using the Gumbel copula, from the class of extreme value copulas (Figure 2.7). 
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Lian et al. (2013) found that for their study area, 24 hours extreme rainfall and high sea level were 

positively dependent. This implies that these two hazards are compound hazards. Figure 2.8 

shows the joint probability of having an event associated with different 24 hours extreme rainfall 

return periods (5 to 50 yr) and tidal level (5 to 50 yr) established with a Gumbel copula. 

 

  

Figure 2.8: Bar graph of the joint probability of tidal level (sea level) and 24 hours rainfall as a function of their 

respective return periods (figure from Lian et al. 2013). 

In coastal engineering, the joint probability of extreme waves and sea surges has also been widely 

studied with different classes of copulas (Masina et al., 2015; Rueda et al., 2016; Mazas and 

Hamm, 2017) or multivariate models (Coles and Tawn, 1994; Hawkes, 2008; Dong et al., 2015).  

2.3.2.2 Approach II: Empirical models 

Empirical models are based on measurements and are observation oriented. In empirical models, 

empirical distributions are fitted directly to the observed data. Among empirical models, we 

defined two families: dependence measures and regressions. The main drawback of empirical 

models in comparison to stochastic and mechanistic models is the impossibility to extrapolate 

beyond the range of the data (Zou et al., 2003). 

 

2.3.2.2.1 Dependence measures 

While looking at hazard relationship, a popular method is to compute dependence measure (Zheng 

et al., 2013; Klerk et al., 2015; Petroliagkis, 2018; Ward et al., 2018). Dependence measures aim 

to describe how two (or more) variables are correlated. Several dependence measures including 

linear correlation (Pearson) or rank correlation (Spearman, Kendall) can be used to measure the 

strength of the association between variables (Hashemi et al., 2015; Hao and Singh, 2016). The 

most popular dependence measure to quantify the dependence between two hazards is the Pearson 

linear correlation coefficient  (Zou et al., 2003):  
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𝜌 =
cov(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
 

(2.2) 

Where cov(x,y) the covariance of the two variables x and y, with associated standard deviations 

(respectively) σx and σy.  

 

For an estimation of the dependence in the tails or extreme parts of the distributions, dependence 

measures previously presented might not be accurate and other dependence measures are more 

appropriate (Hao and Singh, 2016). Dependence between variables in the joint tail domain has 

been widely studied in the statistics literature (e.g., Coles and Tawn, 1991; Ledford and Tawn, 

1997; Coles et al., 2000; Heffernan, 2001; Heffernan and Tawn, 2004; Keef et al., 2013; Zheng 

et al., 2014). The dependence between variables in the tails can be classified as asymptotic 

dependence (or asymptotic independence) and the different diagnostics and measures developed 

are summarized in Heffernan (2001). Two variables can therefore be asymptotically independent 

but also have dependence at sub-asymptotic level. Dependence measures are often used as a first 

estimate of the potential relationship between two hazards and also support the selection process 

of an appropriate stochastic model (Section 2.3.2.1). 

 

2.3.2.2.2 Regression 

Regressions have been widely used to quantify interrelations between natural hazards (Costa and 

Schuster, 1988; Keefer, 2002; Koutroulis et al., 2012; Suppasri et al., 2012; Meng and Shen, 

2014; Iordanidou et al., 2016). Regression is a statistical method to measure changes in a 

dependent variable in response to changes in one or several independent variables (Chen et al., 

2014). There are many different types of regression models such as linear regressions, power 

regressions, logistic regressions or quantile regressions (Zou et al., 2003; Nelder and Baker, 2006; 

Chen et al., 2014; Hao et al., 2018). Linear regressions are the most commonly used to estimate 

relationships between natural hazards (Caine, 1980; Keefer, 2002; Koutroulis et al., 2012; 

Iordanidou et al., 2016; Petroliagkis, 2018) and is often associated with the Pearson linear 

correlation coefficient (Eq. 2). The generalized linear model framework encompasses more 

sophisticated types of regressions such as the logistic regressions (appropriate when the dependent 

variable is dichotomous) (Nelder and Baker, 2006). In situations where we are more interested in 

high (or low) levels for hazards (e.g. an extreme quantile as opposed to the median), quantile 

regression provides a better approach than linear regression (Chen et al., 2014; Hao et al., 2018). 

Regressions have been particularly used for cascading hazards (Figure 2.5) as they include 

independent (primary hazard(s)) and independent (secondary hazard(s)) variables.  

 

2.3.2.2.3 Example of empirical approach: two examples 

Here we give two examples of empirical approaches. Our first is the tail dependence between 

river flow and sea surge. For hazard interrelation quantification, one often wants to focus on the 
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extremes (Svensson and Jones, 2004; Dutfoy et al., 2014). Svensson and Jones (2004) used the 

extremal dependence measures  and 𝜒 ̅ introduced by Coles et al. (1999) to study the extremal 

dependence between sea surge, river flow and precipitation in south and west Britain (Figure 

2.9). These coefficients aim to measure the extremal dependence for bivariate random variables 

(X, Y) and assume initially that the marginal distributions of x and y are identical. The dependence 

measure  is the probability of one variable being extreme given the other is extreme. The 

extremal dependence coefficient varies in the range [0;1] with a value of 0.0 meaning that the two 

variables are asymptotically independent and a value of 1.0 that they are asymptotically perfectly 

dependent. The dependence measure 𝜒 ̅ estimates the level of dependence in the particular case 

of asymptotically independent variables. 

 

Svensson and Jones (2004) highlighted statistically significant asymptotic dependence between 

river flow and daily maximum sea surge, two hazards that combine to form a compound hazard 

(Figure 2.6). In their study, this dependence is associated with overarching meteorological events 

(i.e., mid latitude cyclones). These events may cause both sea surge and high river flow (via 

precipitation). The characteristics of the studied catchment such as size can influence the results. 

For large catchment areas, time lags can become increasingly important, which can be used to 

capture the interrelations between sea surge and river flooding (Svensson and Jones, 2004; Zheng 

et al., 2013; Klerk et al., 2015; van den Hurk et al., 2015). 

 

Figure 2.9: Example of an empirical approach: dependence river flow and daily maximum sea surge occurring 

at high tide around the coastline of the UK. Lines connect neighbouring station-pairs with  exceeding (a) the 

95% significance level, (b) 0.10, and (c) 0.15 (figure from Svensson and Jones. 2004) 

 

Our second empirical approach example is one that is widely studied in terms of interrelations 

between hazards, extreme rainfall and landslides (e.g., Caine, 1980; Glade, 2000; Guzzetti et al., 

2007). According to our review, the quantification of rainfall-triggered landslides (triggering 

relationship, Section 2.3) has been mostly done through empirical models (Figure 2.5). Guzzetti 
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et al. (2007) (amongst others) expressed this interrelation through a regression between rainfall 

intensity I (mm h-1) and rainfall duration D (h) which gives a threshold for landslide triggering. 

This relationship is of the form of (Glade, 2000):  

𝐼 = 𝐶 × 𝐷𝛼 (2.3) 

with, C and α constants. 

 

As shown in Figure 2.10, this relationship varies depending on the region concerned, one of the 

main limitation of this approach. The triggering threshold also depends on other parameters such 

as the history of landslide occurrence, soil type, slope, and antecedent conditions. This last aspect 

has been addressed by Glade (2000) in New Zealand. 

 

Figure 2.10: Intensity-duration relationship for landslide triggering in New Zealand (from Guzzetti et al. 2007) 

2.3.2.3 Approach III. Mechanistic models 

Mechanistic models are mathematically idealized representation of real phenomena (Devia et al., 

2015). They are based upon physical processes and mechanisms that rule the considered system 

operations. Usually, mechanistic models are applied on water bodies (Booij et al., 1996; Geist et 

al., 2009; Luger and Harris, 2010; Dutykh et al., 2011), as the equations coming from fluid 

mechanics can be used. Mechanistic models are divided into two families: conceptual models and 

physical models.  

 

2.3.2.3.1 Conceptual models 

Conceptual models are widely used in hydrology (Nash and Sutcliffe, 1970; Devia et al., 2015). 

In hydrology, conceptual models aim to describe all the components of hydrological processes 

with various interconnected reservoirs which represent the components of the flow of a river (e.g., 
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infiltration, runoff, snowpack). Conceptual models need a large amount of input data (usually 

rainfall and temperature records) to assess different parameters through calibration. Examples of 

hydrological conceptual models include GR (Coron et al., 2017), HBV, TOPMODEL and 

MORDOR (Devia et al., 2015). 

 

2.3.2.3.2 Physical models 

Physical models aim to simulate the behaviour of different systems such as the atmosphere (Tinti 

et al., 2003), the ocean (Klerk et al., 2015), the climate (Kašpar et al., 2017) and hydrological 

systems (Devia et al., 2015; Bout et al., 2018). Based on our literature database, physical models 

tend to use fluid mechanics, heat transfer equations or thermodynamic laws. In hydrology, the 

processes of water movement are represented by finite difference equations (Silvestro et al., 

2016). To model mechanistically extreme hydrological events, an extensive amount of data (e.g., 

soil moisture content, initial water depth, topography, topology, dimensions of river network) is 

required (Dietrich et al., 2010; Bout et al., 2018). This massive need for data is the main drawback 

of physically-based hydrological models compared to conceptual models (Devia et al., 2015). 

Hydrodynamic models are based on the shallow water equation and are usually 1D or 2D with 

the modelled domain often represented with triangular meshes (Tinti et al., 2003; Wang et al., 

2012; Silva-Araya et al., 2018). This modelled domain can be discretized by numerical methods 

such as finite elements or finite volumes (Geist et al., 2009). Physical models can overcome many 

weaknesses of the empirical or stochastic models because they use parameters which have 

physical meaning. However, they are often computationally intensive (Geist et al., 2009; Luger 

and Harris, 2010; Borgonovo et al., 2012).  

 

2.3.2.3.3 Example of Mechanistic approach: Volcanic eruption triggering a 

Tsunami 

Here we give an example of a mechanistic approach, that of a volcanic eruption triggering a 

tsunami. Hydrodynamic or hydraulic models based on shallow water equations are suitable to 

model hazard interrelations within bodies of water (sea, lake and river) (e.g., Pelinovsky and 

Poplavsky, 1996; Kumbier et al., 2018). Tsunami characteristics allow the use of shallow-water 

equations to model the propagation and intensity of a tsunami wave given the characteristics of 

an earthquake or a submarine landslide (Geist et al., 2009; Luger and Harris, 2010). Various 

studies have been conducted to develop operational code for the numerical modelling of tsunamis 

(e.g., Pelinovsky and Poplavsky, 1996; Dutykh et al., 2011). Numerical models are also used to 

assess the effect of tsunamis generated by continental slope slides on particular shorelines (Geist 

et al., 2009) or to better understand the effect of past tsunamis on particular areas (Power et al., 

2017).  
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Tinti et al. (2003) provide a thorough example of the mechanistic approach, using a hydrodynamic 

model to assess the interrelation between a volcanic eruption (here a pyroclastic flow) and 

tsunamis in the Gulf of Naples. From historical eruptions, Vesuvius can produce explosive 

eruptions with a large volume of pyroclastic flows. Tinti et al. (2003) considered two processes 

that could trigger a tsunami from pyroclastic flows: (i) the penetration of dense flows into the 

water, which is comparable to a landslide-induced tsunami; (ii) the overpressure pulse generated 

by light pyroclastic flow travelling on the sea surface over long distances. To estimate the 

influence of a pyroclastic flow, Tinti et al. (2003) estimated the pressure pulse that could be 

produced by a large Vesuvian eruption and propagated it over the whole Gulf of Napoli (Figure 

2.11). Using the non-linear shallow water equations they found that the potential amplitude of a 

tsunami triggered by pyroclastic flows in the Gulf of Naples remains small (with the largest waves 

having an amplitude around 70 cm on the coastline), even including uncertainties around the set 

of parameters. 
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Figure 2.11: Pressure pulse-field (on the left) computed at different times, given in minutes. Water elevation 

fields (on the right) computed at the same instant. Time is measured from tsunami origin time and not from the 

beginning of the eruption. Contour lines labels are in cm. Positive/negative elevation curves are solid/dashed 

lines (figure from Tinti et al. 2003) 

 Hazards, models and interrelations 

In Section 3.2 we defined three different modelling approaches for hazard interrelations 

quantification (stochastic, empirical, mechanistic) along with associated modelling families and 

methods. We will now focus on the links between these modelling approaches/families/methods 

with the previously defined hazard categories (atmospheric, geophysical, hydrological) and three 

of the five interrelation types (change condition, compound, triggering). Within the three 

modelling approaches presented in Section 2.3.2, some modelling methods are more popular for 

hazard interrelation studies (i.e., they occurred more frequently in our hazard interrelationship 

model database, Appendix B Table B1).  
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Figure 2.12a shows the number of uses of modelling methods amongst the 70 natural hazard 

interrelations studies (79 uses overall: stochastic 27 uses; empirical 31 uses; mechanistic 21 uses), 

with 6 of our 70 references using more than one modelling methods. There are different reasons 

for a given reference having more than one use: (i) the same modelling method has been applied 

to different hazard combinations (Carey et al., 2003; van den Hurk et al., 2015); (ii) different 

modelling methods are compared using the same hazard combination (Zheng et al., 2014; Sadegh 

et al., 2017); (iii) different modelling methods are combined for a given hazard combination 

(Dietrich et al., 2010; van den Hurk et al., 2015; Petroliagkis, 2018).  

 

Figure 2.12: Circular barplot for each of the three modelling approaches (stochastic, empirical, and 

mechanistic): (a) the modelling method number of uses from Figure 2.7 (out of 79 model method uses); (b) three 

interrelation types frequency (triggering, compound, change condition). Data based on our interrelationship 

database (Appendix B Table B1). Colour groupings used approximate those given in Figures 2.5 to 2.7. 

 

Figure 2.12a shows that amongst the 70 references (79 uses) for hazard interrelationship 

modelling: 
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− Stochastic modelling approach: extreme copulas method are the most prevalent (30% of 

stochastic modelling uses, 8 occurrences out of 27. This is explained by the fact that 

among the 14 hazards selected in this review, several are the extreme occurrence of 

environmental variables (e.g. extreme temperature). 

− Empirical modelling approach: linear regressions methods are the most prevalent (51% 

of empirical modelling uses, 16 occurrences out of 31). This is probably due to their 

relative ease of use and interpretation.  

− Mechanistic modelling approach: hydrodynamic models are the most prevalent (81% of 

mechanistic modelling uses, 17 occurrences out of 21). Hydrodynamic models are 

relevant in describing many different types of hazard interrelations (e.g., river flooding, 

coastal flooding, compound flooding, tsunami).  

 

Figure 2.12b shows the frequency of the three interrelation types (triggering, compound, change 

condition) (total of 77 uses in our hazard interrelationship database) as a function of the three 

modelling approaches (stochastic, empirical, mechanistic). The reason for one reference having 

more than one use is analogous to the ones mentioned above. We find from Figure 2.12b: 

− Stochastic modelling approach: the compound interrelation type is by far the most 

prevalent (22 out of 25 uses, 90%). Stochastic models presented in this study do not 

capture temporal effects or feedback loops, even if the use of lag times or conditional 

probabilities can overcome this limitation (van den Hurk et al., 2015; Liu et al., 2018). 

However, as compound hazards are two (or more) hazards that act together on a given 

region and time (Section 2.2.2), stochastic models are particularly relevant for these as 

can be seen in Figure 2.12b. 

− Empirical modelling approach: the compound interrelation type (20 out of 30 uses, 67%) 

is twice as prevalent as the triggering interrelation type (10 out of 30, 33%). The relative 

simplicity of empirical models offers a way to obtain a quantitative assessment of a 

hazard interrelation when mechanistic models (next) cannot be applied. 

− Mechanistic modelling approach: the triggering interrelation type (13 out of 22 uses, 

59%) is more prevalent than compound (7 out of 22) and change condition (2 out of 22) 

types. The complexity and level of precision of mechanistic models allow one to represent 

a broad range of interrelations including amplification or triggering effects.  

 

Within our three modelling approaches, we defined six families, two for the stochastic and 

mechanistic approaches and three for the empirical approach (one of which is shared with the 

stochastic approach). In Figure 2.13, we consider the modelling family as a function of the 

category of hazard studied (atmospheric, geophysical, hydrological). We start with the 70 

references in our interrelationship database. Of these, 68 references have one pair of hazards 
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discussed, and two sources have 3 (Carey et al., 2003) and 2 (van den Hurk et al., 2015) different 

hazard combinations. For the 73 hazard combinations in our database, we then paired each natural 

hazard with the model family used in the reference. For example, Bout et al. (2018) examine the 

interaction of rainfall (atmospheric natural hazard category) and landslides (geophysical hazard 

category) using a hydrodynamic model (physical model family) and Bevacqua et al. (2017) 

examine sea surge (hydrological hazard category) and river flooding (also hydrological hazard 

category) using vine copulas (copula model family). Therefore, we would count 1 x physical 

model in the atmospheric hazard category, 1 x physical model family in the geophysical hazard 

category, and 2 x copula model family in the hydrological hazard category. In Figure 2.13, there 

are 56 instances for atmospheric, 22 for geophysical and 89 for hydrological natural hazard 

categories. We then count the percentage of instances within each natural hazard category as a 

function of the six model families on a radar chart.  

 

 

Figure 2.13: Radar chart of the use (in %) within each model family by hazard groups. Percentages are out of 

the number of instances within each natural hazard category (given in legend). 

From Figure 2.13 we find: 

− For atmospheric hazards, the regression modelling family is largely dominant (43%) in 

our interrelation database. This can be explained by the complexity of modelling 

interrelations between atmospheric hazards such as hail, lightning or wind and the lack 

of robust or large enough datasets for some of these hazards (Webb, 2016).  

− Geophysical hazards are predominantly either physical models (57%) or regression 

model (36%). Physical models are favoured when the resources are sufficient (data 
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quantity, computational power) but regressions can be applied with lower quantities of 

data.  

− Hydrological hazards have been studied with every model family in this review. Copulas 

(31%) and physical models (30%) are the most popular as they can provide results from 

a wide range of scenarios and extrapolate beyond the observations. 

 

In Section 2.3, we reviewed the use of 19 different modelling methods for the quantification of 

interrelations between 14 different natural hazards. We will now discuss some of the results 

presented in Section 2.2 and Section 2.3. 

 Discussion and conclusions 

The study of multi-hazard is a relatively new field (Kappes et al., 2012b; Gill and Malamud, 2014; 

Pescaroli and Alexander, 2018; Terzi et al., 2019) and still not unified in its terminologies and 

approaches. This critical review article has aimed to use grey- and peer-review literature to 

critically identify and compare current research in quantifying (natural) hazard interrelations. In 

this critical review article we aspire to add to others in the multi-hazard community who have 

reviewed and identified relevant modelling approaches to quantify different kinds of interrelations 

between hazards and risks (e.g., Liu et al., 2015; Gallina et al., 2016; Hao and Singh, 2016; Terzi 

et al., 2019). By doing an extensive review, including a broad range of natural hazards involving 

different time and space scales, we have aimed to contribute to a better understanding on the state-

of-the-art regarding hazard interrelations quantification and offer a clear view on weaknesses and 

strength of several methods in different contexts. For this purpose, a natural hazard 

interrelationship literature database of 146 sources (Appendix A) was created and used to explore 

the following: (Section 2.2.1) terminology surrounding multi-hazard interrelations; (Section 

2.2.3) quantification models for interrelations between hazards. This section will discuss the five 

following themes: (a) the diversity of modelling methods for quantifying hazard interrelations; 

(b) some of the main drivers in modelling method selection for hazard interrelations 

quantification; (c) limitations (uncertainties) of the modelling methods; (d) limitations of the 

present review; (e) perspectives for extending this interrelationship classification to more than 

two hazards. 

 

The diversity of modelling methods for quantifying hazard interrelations: In this chapter, we have 

focussed on the quantification of interrelations between two (vs. three or more) hazards, for 14 

different natural hazards. We used matrices (Figures 2.5 and 2.6) to display our findings, similar 

to other studies (e.g., Gill and Malamud, 2014; Decker and Brinkman, 2015). We used these 

matrices to display the use of different modelling approaches (stochastic, empirical, mechanistic) 

for hazard interrelations quantification. The wide variety of modelling approaches reviewed 
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highlights the lack of a unified framework for multi-hazard quantification. Indeed, this variety is 

not surprising, given the range of natural hazards considered in this study (Table 2.1) across 

geophysical, atmospheric and hydrological categories. Different types of hazard interrelations that 

extend across varying spatial and temporal scales require a panoply of modelling methods, and a 

coupling between these models (Leonard et al., 2014). The difficulty to model all hazard 

interrelations in the same manner is highlighted in Section 2.3, where two matrices are displayed 

(for 14 natural hazards) to present (i) cascading hazards (Figure 2.5) and (ii) compound hazards 

(Figure 2.6). Later, we summarize (Figure 2.7 and 2.12) the 19 modelling methods that are most 

prominently used in the literature across 14 natural hazards for quantifying the interrelationships 

between these hazards. The figures and database (Appendices A and B) are a resource that can 

be consulted by the reader to be more aware of (i) those modelling methods (including reference 

to specific literature) currently directly being done for a given hazard interrelationship pair, (ii) 

other potential modelling methods that are being applied across all hazards studied here. For 

example, the interrelation between drought and extreme temperature have been studied with 

empirical (quantile regression) and stochastic methods (Gaussian copula) (Meng and Shen, 2014; 

Serinaldi, 2016), but it might also be studied using other methods in the database such as 

conditional extreme models or other types of regression depending on the needs. 

 

Some of the main drivers in modelling method selection for hazard interrelations quantification. 

It is not the purpose of this study to rank modelling methods in general. Nevertheless, we can 

argue from Section 3.3 that some approaches or even models seem more applicable to given 

interrelation types or hazard categories and hazard types. Indeed, relationships where one hazard 

triggers or changes the conditions for another imply causality, which is not undertaken by the 

stochastic models reviewed in this work. Similarly, interrelations between compound (associated) 

hazards cannot be modelled with regression models which imply that one parameter (hazard) is 

influencing the other (causality). For example, interrelations of any geophysical hazard with any 

hazard category (geophysical, atmospheric, hydrological) are mostly quantified with physical 

models or regressions while interrelations of a hydrological hazard with any hazard category are 

mostly studied with copulas or physical models. As most of the hazard interrelations studies in 

our database are case studies, model choice is conditioned by the studied area, the hazards studied 

or the quality of the data available. But the choice of a quantification method when studying 

interrelations between hazards goes beyond the previously cited constraints; the context and the 

purpose of the study play an important role. For example, a study with engineering purposes might 

be more prone to use multivariate model to extrapolate beyond the range of observations while a 

study focusing on the impact of a particular hazard interrelation might favour a physical model. 

 

Limitations (uncertainties) of the modelling methods. There are many limitations for the 19 

modelling methods discussed here, with one of the major ones being data quality. Empirical 
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models are more sensitive to data quality because they are data-driven. In stochastic modelling 

approaches, additional uncertainties come from the different assumption made (e.g., statistical 

distribution choice, dependence model selection). In the case of mechanistic models, data are also 

central to calibrate and validate the model, and other uncertainties arise from some assumptions 

and simplifications inherent to the model. 

 

Limitations of the present review. One of the limitations of the model classification presented in 

this review is that it is designed for interrelations between two hazards. Multi-hazard modelling 

becomes effectively more complicated when going to higher dimensions (i.e., more than two). 

Empirical models such as regression accept multiple parameters. This can be useful to create a 

hazard index or indicators for multiple hazard risk (Marzocchi et al., 2012; Nadim et al., 2013; 

Westen et al., 2017). Mechanistic models can represent the behaviour of several environmental 

variables. But, their scales often do not correspond to the needs of a multi-hazard study (Leonard 

et al., 2014).  

 

Regarding stochastic models, most of the parametric copulas in use for bivariate hazard models 

lack flexibility when going to higher dimensionality (Bevacqua et al., 2017; Hao et al., 2018). 

Besides, the variability of the dependencies among the different pairs of hazards makes it harder 

to model (Bevacqua et al., 2017). A multivariate extreme model such as the conditional extreme 

model is suitable for high-dimension (Heffernan and Tawn, 2004); although, this model has not 

been tested for high dimensional multi-hazard modelling yet. The present review does not cover 

all the possible methods for quantifying natural hazard interrelations. Methods such as agent-

based modelling or event trees could have been included, but these latter are weak in addressing 

uncertainties (Terzi et al., 2019) and their relevance is limited when dealing with a low number 

of variables. The physical phenomena behind natural hazards can offer better insight or better 

characterisation of the interrelation, particularly for meteorological hazards. These events have 

been sketched in the literature and are mostly considered as predictors or triggering factors (Liu 

et al., 2016; Bevacqua et al., 2017). Other limitations of this review include those inherent in any 

critical and systematic review (e.g., see discussion in Gill and Malamud, 2014; Reichenbach et 

al. 2018, for inherent weaknesses), such as potentially not having covered all relevant literature 

to ‘capture’ the current use of models relevant for quantifying hazard interrelations. We believe, 

though, that our review methodology (Section 2.2) is robust enough to capture not all literature, 

but the majority of modelling methods and approaches currently in use for the 14 hazards we 

explored in this review chapter.  

 

Perspectives for extending this interrelationship classification to more than two hazards. To 

address the challenge of extending our classification to a high number of variables, recent research 

conducted suggests pair-copula construction (PCC) (Bevacqua et al., 2017, Lui et al., 2018) and 
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network approaches (Nadim et al., 2013; Leonard et al., 2014; Gill and Malamud, 2016; Liu et 

al., 2017) to model multi-hazard events. PCC is also called vine copula (Bedford and Cooke, 

2002; Hashemi et al., 2016; Bevacqua et al., 2017, Lui et al., 2018). The decomposition which 

the vine copula framework allows one to select different bivariate copulas for each pair of 

variables, providing great flexibility in dependence modelling (Brechmann and Schepsmeier, 

2013; Hao and Singh, 2016). Among the network approaches, Bayesian networks are very 

promising with an increasing use not only in multi-hazard risk assessment studies but also in 

dependability analysis, risk analysis and maintenance studies (Gutierrez et al., 2011; Duval et al., 

2012; Weber et al., 2012; Poelhekke et al., 2016; Kwag and Gupta, 2017; Sperotto et al., 2017). 

Bayesian networks have lots of benefits when dealing with a great number of variables, 

particularly their versatility and their capacity to model both dependability and causality 

relationships (Weber et al., 2012). Moreover, Bayesian networks are not originally designed to 

deal with continuous variables (Sperotto et al., 2017) and that is why these were not discussed in 

Section 2.3. Non-parametric Bayesian networks which associate the structure of Bayesian 

network and copulas (Hanea, 2010; Hanea et al., 2010, 2015) represent one way to overcome this 

limitation. For example, this method has been used to study multiple dependence between river 

discharge and storm surge in the USA during a hurricane (Couasnon et al., 2018). The association 

of copulas and Bayesian networks is a dynamic area of study and different approaches have 

already been developed with very few applications to natural hazards (Hanea, 2010; Elidan, 2010; 

Bauer and Czado, 2016; Pircalabelu et al., 2017).  

 

In conclusion, we have used our literature database composed of 146 references to identify trends 

for hazard interrelation. We first highlight trends in terminology to define hazard interrelations 

from these group hazard interrelations into five hazard interrelationship types: triggering, change 

condition, compound, independence and mutually exclusive. Our critical review focuses on 14 

different natural hazards from three hazard categories (atmospheric, geophysical, hydrological) 

and the possible interrelations that can occur between these. From the 14×14 possible hazard 

interrelation couples within our set of hazards, we find quantification methods applications to 24 

different interrelations. Two matrices are created to illustrate this in practice, one for cascading 

hazards (temporal order in the multi-hazard event) and one for compound hazards (two or more 

hazards acting together). We then identify three modelling approaches (stochastic, empirical, 

mechanistic) including 19 modelling methods to quantify hazard interrelations between two 

hazards for 14 hazards. We then synthesize the results of our classification of quantification 

methods for hazard interrelationships and propose an outlook on the modelling approaches used 

regarding the category of the hazards studied and the type of the interrelation between these latter. 

In this context, using an appropriate modelling method combined with a better understanding of 

physical phenomena leading to hazards interrelations (multi-hazard events) might be one of the 

keys toward efficient hazard interrelation quantifications.  
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Afterwords:  

This afterwards is written after the publication of Tilloy et al. (2019) and included here as part of 

this thesis, as further discussion points on the usefulness and limitations of the approach described 

in this chapter.  

 

The classification of hazard interrelations made in this chapter uses a mix of statistical criteria 

and process-based criteria. Both criteria are useful to characterize hazard interrelations. Process-

based criteria are more related to causal interactions while statistical connections are particularly 

useful when processes are not fully understood or not modellable. Two classifications (with 

bridges) could then be useful and associated with statistical (stochastic/empirical) or mechanistic 

models. 

 

The categorisation of models done in this chapter and displayed in Figure 2.8 can be subject to 

discussions and readjustments. Although it was designed through a rigorous literature review on 

hazard interrelations (Appendicies A and B), this classification does not include all possible 

methods to model hazard interrelations. The categorisation includes 19 different modelling 

methods and is intended to capture a map of the main work on hazard interrelation modelling as 

of 2019. The three modelling approaches defined in Section 2.3.2 may not be the most meaningful 

for the set of methods reviewed. While mechanistic models represent an unambiguous category, 

the boundary between stochastic and empirical models is more porous as copulas and regressions 

both depend on observational data and have stochastic aspects. 

 

A distinction between stochastic models which would include copulas, regressions and 

dependence measures could be more meaningful than the one currently displayed in Figure 2.7. 

Copulas are multivariate models; therefore, the separation of stochastic models between 

parametric (copula) from non or semi-parametric (Joint tail model, conditional extremes) could 

also be more relevant than the current partition. Another meaningful categorisation within 

stochastic models could separate distribution models (copula, multivariate extreme models), 

which model a whole distribution from expectation models (regressions) which model the 

expected value of an outcome variable from one or several input variables. Some methods 

presented in Figure 2.7 are also fundamentally interlinked (e.g., tail dependence measure used as 

parameters for extreme value copula) or can be combined (e.g. copula regression, Masarotto and 

Varin, 2017). Despite these shortcomings, the author believes that this classification, and more 

importantly, the 19 modelling methods reviewed in this chapter, remain meaningful in the context 

of hazard interrelation modelling. 
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Chapter 3: The multi-hazard landscape of 

Western Europe 

Summary: 

Natural hazards can be associated with geophysical or meteorological processes. In that context, 

understanding potential drivers and processes leading to hazard interrelations is of prior interest. 

This chapter aims to go beyond the study of pairs of hazards and to examine the multi-hazard 

landscape of the European Atlantic Region (EAR). A total of 16 natural hazards were selected to 

characterize the multi-hazard landscape of the EAR. These 16 natural hazards are grouped based 

on physical drivers (e.g., meteorological, geophysical) and prior knowledge on interrelations 

between hazards. Five sets of interrelated hazards occurring in a given space-time frame named 

multi-hazard networks are created: Ground movements, convective storms, extratropical 

cyclones, compound dry hazards and compound cold hazards. A range of sources has been 

reviewed to create these networks and find evidence of past occurrences of these networks, called 

multi-hazard events. This catalogue also aims to bring together different sources and databases of 

single hazard events. Sources are of the following types: (i) Single hazards catalogues (e.g., BGS 

Tsunami, SurgeWatch); (ii) Catalogue of reported hydrometeorological events (e.g., Met Office, 

Infoclimat); (iii) Disaster databases (e.g., EM-DAT); (iv) Peer review articles. A catalogue of 50 

events (10 per network) is constructed to illustrate the approach. Based on this catalogue, spatial 

and temporal scales, as well as dominant hazard and hazard interrelations of each of the five multi-

hazard networks, are assessed semi-quantitatively. Finally, 34 freely available datasets to quantify 

hazard interrelations within multi-hazard networks are reviewed. The strengths and weaknesses 

of different types of datasets are assessed along with their applicability to different multi-hazard 

networks. Information about spatial and temporal scales, dominant hazards and datasets provide 

support for hazard interrelation modelling.  

  



 The multi-hazard landscape of Western Europe  

Page 70 

 Introduction 

The interdependence between different hydrological, climatological or geophysical extreme 

events and hazards has been highlighted in Chapter 2 and recent literature (Sadegh et al., 2017; 

Liu et al., 2018). The classification of natural hazard interrelations provided in Chapter 2 is part 

of a general effort to increase our understanding of connected hazards and extreme events (Gill 

and Malamud, 2014; Liu et al., 2016; Zscheischler et al., 2020). Recent studies have grouped 

interrelated hazards into events and analysed their potential drivers (Hillier et al., 2020; 

Zscheischler et al., 2020). Past notable events have been analysed through pathway schemes to 

improve the understanding of processes leading to compound or multi-hazard events 

(Schauwecker et al., 2019). Climatic and geophysical characteristics of a region play an important 

role in the development of natural hazards and natural hazard interrelations (Terzi et al., 2019). 

The aim of this chapter is to go beyond the study of pairs of hazard and to understand the multi-

hazard landscape of a given region (i.e. the relevant single natural hazards and the processes by 

which they may interrelate to generate combinations or cascades of hazards) (Gill et al., 2020). 

Regional studies of potential hazard interactions have been undertaken in several parts of the 

world (Tarvainen et al., 2006; Kappes et al., 2012a; Gill et al., 2020).  

 

This chapter is tailored to be relevant to western Europe and in particular, to France and the United 

Kingdom (see Chapter 1). The definition of the boundaries of a region to study can be related to 

various factors (e.g., political, physiographical, geological, climatic, biological) which influence 

the multi-hazard landscape. In that context, for western Europe, the concept of a biogeographical 

region is relevant. A biogeographical region is an area of similar character in terms of the biota 

(fauna & flora) present in it (EEA, 2020). The extent and boundaries of each region have been 

determined by changes in climate and the movement of continents, and accompanying changes 

in the physical and climatic barriers to migration (Calow, 1999). This relative homogeneity in 

term of biota is the justification for the definition of the boundaries of the region to study. The 

European Union delineated nine biogeographical regions for Europe (EEA, 2002). Among these 

is the European Atlantic Region (EAR) which includes the whole of United Kingdom and the 

western part of France; the two countries account for more than 60% of the Atlantic region, and 

the region studied in this chapter.  

 

This chapter is structured as follows: in Sect. 3.2, the characteristics of the EAR are discussed, 

including the climate to which the region is exposed is presented (Sect. 3.2.1) and relevant natural 

hazards for the EAR are identified using blended sources of evidence (Sect. 3.2.2). In Sect. 3.3, 

interrelated hazards are grouped into distinct multi-hazard networks. Multi-hazard networks 

construction is based on physical drivers (e.g., meteorological, geophysical) and prior knowledge 

on interrelations between hazards. Five multi-hazards networks relevant for the EAR are designed 
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and presented in Sect. 3.3. In Sect. 3.4, A catalogue of 50 multi-hazards events (10 per network) 

is constructed to illustrate the approach (Sect. 3.4.1). Based on this multi-hazard event catalogue, 

the prevalence of each hazard and hazard interrelation in each group is studied (Sect. 3.4.2). 

Finally, an overview of freely available numerical data to quantitatively study multi-hazard events 

from the five previously defined group is provided (Sect. 3.4.3). 

  The European Atlantic Region (EAR) 

To understand the multi-hazard landscape of a given region, its climatic and physiographic 

characteristics are investigated. Figure 3.1 is a physiographic map displaying the European 

Atlantic region (EAR) and highlighting the general low elevation of the region, in particular in 

coastal areas. The EAR has an area of 830,000 km2 and includes territories of 10 countries with 

France and the UK representing respectively 32% and 30% of the total area (European 

Environment Agency, 2003). From Figure 3.1, we see that the region has a significant proportion 

of lowlands in coastal areas, particularly in the Netherlands, West Britain and in the Bay of 

Biscay. Mountain ranges of the British Islands and Britany are of ancient origin and therefore 

relatively modest in height due to erosion (Ager, 1975; Clayton, 1996) (≤ 1200m above sea level). 

Higher mountains (≥ 1200m above sea level) in Spain and Portugal are the result of more recent 

geological processes associated with the Genesis of the Alpes and the Pyrenees (Ager, 1975). 

Major active faults in the region are situated in the Iberic peninsula and Belgium (Giardini et al., 

2014).  
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Figure 3.1: Physiographic map of Western Europe. The European Atlantic Biogeographical region is highlighted 

with a white line and is inclusive of all or parts of ten countries, of which the UK and western France account 

for 62% of the EAR total area. Figure from EEA (2003).  

 The climate of the European Atlantic Region 

To better understand the climate of the EAR (and its potential driving influence for natural 

hazards), the Köppen-Geiger climate classification was used. This classification was developed 

in the late 19th century (Köppen, 1884) and is still widely used today to, for example, assess 

impacts of climate change (Mahlstein et al., 2013). The Köppen-Geiger system classifies climate 

into five main classes and 30 sub-types. The classification is based on the seasonality of monthly 

air temperature and precipitation (Beck et al., 2018b). Figure 3.2 represents the Köppen-Geiger 

classification map for Europe for the period 1980–2016 at 1 km resolution. This map was 

developed by Beck et al. (2018b). Despite small variations, the EAR has on overall a temperate 

(no dry season, warm summer) climate (Cfb) highlighted in light green in Figure 3.2. The relative 

climatic homogeneity of the region follows its biogeographical characteristics, as different 

climates in a similar class share common vegetation characteristics (Beck et al., 2018b). The 

climate is highly influenced by the Atlantic, which provides precipitation throughout the year to 

the region (Hulme and Barrow, 1997). However, there are significant disparities between the 

northern part of the region (e.g., British Islands) and the Southern part, which is bordered by drier 

regions of Portugal and Spain (Figure 3.2).  
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Figure 3.2: Köppen-Geiger climate classification of Europe. From (Beck et al., 2018b). 

In the winter months, the EAR is exposed to storms and extra-tropical cyclones (ETCs), which 

account for over 70% of total precipitation in some areas (Hawcroft et al., 2012). ETCs can also 

bring strong wind, high waves and storm surges (Ulbrich et al., 2009; Brönnimann and Martius, 

2013). Despite not having a dry season, the Atlantic region has been hit by severe drought and 

heatwaves in the past decades during the summer (Fink et al., 2004; Barriopedro et al., 2011). 

Hot and dry summers often lead to wildfire outbreaks (Sutanto et al., 2020). However, the 

occurrence of drought and heatwaves is expected to increase in the 21st century due to 

anthropogenic climate change (Baldwin et al., 2019). Even if convective storms are not as 

prevailing in the Atlantic region as they are around the Mediterranean sea (Drobinski et al., 2014), 

severe thunderstorms occur in the summer and autumn, often leading to flash floods (Acreman, 

1989; Anderson and Klugmann, 2014; Webb and Elsom, 2016). 

 Natural hazards in the European Atlantic Region 

Every year, the EAR is exposed to a wide variety of natural hazards, such as floods, extreme wind, 

wildfires (Lung et al., 2013; Roberts et al., 2014). The particular hazards in a given sub-region of 

the EAR vary depending on that sub-region’s climate, geology or topography (Schmidt-Thomé 

and Kallio, 2006). From Section 3.2.1, it is possible to identify physiographic and climatic 

preconditions for natural hazards in the EAR. This approach is a standard process while screening 

natural hazards relevant to an area (Liu et al., 2016; Gill et al., 2020). For example, while coastal 

lowlands are more vulnerable to extra-tropical cyclones (Thorne, 2014; Van Den Hurk et al., 

2015), mountainous areas are more prone to landslides (Van Den Eeckhaut et al., 2012; 
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Valenzuela et al., 2019). Southern parts (Spain, Portugal, France) of the EAR can see significant 

wildfire outbreaks in summer (Pereira et al., 2011), while floodplains of northern France and the 

Rhine valley often experience riverine floods (Disse and Engel, 2001). The identification of 

relevant natural hazards for the EAR is performed on three main criteria: (i) frequency of 

occurrence, (ii) spatial relevance, (iii) potential to impact energy infrastructures. The relevance of 

natural hazards regarding these three criteria is assessed using three main sources (each associated 

to a criteria):  

(i) Frequency of occurrence. The Emergency Events Database (EM-DAT): 

The Emergency Events Database (EM-DAT) is a record of disasters maintained by the 

Centre for Research on the Epidemiology of Disasters (CRED, 2018). EM-DAT contains 

data on the occurrence and effect of over 15,300 disasters (as of 2020) in the world from 

1900 to present. There are several criteria for a disaster to be included in the dataset 

(CRED, 2018): 

− ≥ 10 people died or 

− ≥100 people affected or 

− declaration of a state of emergency or a call for international assistance.  

Despite the international use and recognition of EM-DAT, the quality of this disaster 

database faces biases (e.g., threshold biases, spatial aggregations) discussed by Jonkman 

(2005) and Gall et al. (2009) and geographic information are provided at the country 

level. Disaster profiles for the 10 countries which are part of the EAR were extracted 

(France, UK, Germany, Portugal, Denmark, Netherlands, Belgium, Spain, Norway, 

Ireland) from EM-DAT (CRED, 2018) over the period 1900–2018. The EAR covers 

approximately 36% of the aggregated area of these 10 countries, meaning that some 

disasters retrieved and displayed in Figure 3.3 might not have occurred within the EAR. 

The occurrence distribution of natural disasters from this database is displayed in Figure 

3.3. It offers an estimate of the frequency of occurrence of different natural hazards to 

which the EAR is exposed. However, the small number of coastal floods recorded might 

be an artefact of the dataset.  
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Figure 3.3: Occurrences of the 16 most frequent natural disaster subtypes in Europe in the period 1900–2020. 

Data from CRED (2020). 

(ii) Spatial relevance. The Spatial Effects and Management of Natural and Technological 

Hazards in Europe - ESPON 1.3.1:  

To assess the spatial relevance of natural hazards to the EAR, the main source used is the 

report ESPON 1.2.3.1. The ESPON (European Spatial Planning Observation Network) 

program finances and monitors research project on the territorial effects of major spatial 

developments in Europe (ESPON, 2006). Under the ESPON 2006 program, one thematic 

project addressed “Spatial effects of natural and technological hazards”. The main aim of 

this project is to represent the spatial patterns of natural and technological hazards in 

administrative regions of the ESPON space (i.e., Europe). As part of this program, 11 

natural hazards relevant to Europe were selected based on several indicators including:  

− their probability of occurrence, 

− the potential damage they produce,  

− their spatial relevance and  

− their relation to the climates of Europe.  

As a result, Schmidt-Thomé and Kallio (2006) produced hazard maps showing the spatial 

relevance of the 11 natural hazards to Europe ( avalanches, drought, earthquakes, extreme 

temperatures, floods, forest fires, landslides, storm surges, tsunamis, volcanic eruptions, 

winter and tropical storms) at a sub-national level ( NUTS (Nomenclature of Territorial 

Units for Statistics) 3). This spatial resolution allows one to pull out the most relevant 

hazards for the EAR from these maps:  

− drought (Spain and Portugal),  

− floods (UK, France, Netherlands),  

− forest fires (Spain and Portugal),  
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− landslides (UK, Spain, Norway),  

− storm surges (UK, Netherlands, Denmark) and  

− winter and tropical storms (all EAR).  

Maps displaying the spatial distribution of seismic hazards (Giardini et al., 2014), 

landslides (Van Den Eeckhaut et al., 2012), lightning (Anderson and Klugmann, 2014), 

and hail (Punge and Kunz, 2016), have also been consulted to assess the spatial relevance 

of these hazards. 

(iii) Impact on energy infrastructures. The Energy Technologies Institute (ETI) Natural 

Hazards Project: 

The ETI Natural Hazards Project (ETI, 2018) is an initiative funded by the Energy 

Technologies Institute and delivered by EDF Energy, the Met Office and Mott 

Macdonald. This project aimed to summarise the state of the art on natural hazard 

characterisation for a variety of natural hazards. It focuses on natural hazards that may 

negatively impact energy infrastructures in the UK and is mainly aimed toward engineers 

of the energy sector. Natural hazards considered in the project were selected based on 

criteria such as the spatial relevance to the UK, potential to damage energy infrastructures 

and gaps in hazard characterisation. The 10 natural hazards “classes” were characterized: 

extreme temperatures, extreme wind, extreme precipitation, river flooding, coastal 

flooding, seismic volcanic and geological hazards, lightning, hail, space weather, marine 

biological fooling. Among these 10 hazards classes, 6 were identified as representing 

important hazards that can impact infrastructure across the UK (ETI, 2018): extreme 

temperatures, extreme wind, extreme precipitation, river flooding, coastal flooding, 

seismic volcanic and geological hazards. This information was used to identify hazards 

that have the potential to impact the energy sector and its infrastructures.  

 

There is reasonable accordance between the disasters from EM-DAT displayed in Figure 3.3 and 

those hazard selected in the two other projects (Schmidt-Thomé and Kallio; 2006, ETI, 2018). 

Moreover, the EM-DAT classification offers hints to group natural hazards into multi-hazard 

networks. For each criterion, the relevance of each natural hazard is assessed with a semi-

quantitative score on three levels: (-) not mentioned, (*) mentioned, (**) mentioned and 

important. By combining the relevance scores on each of these three criteria, 16 natural hazards 

were selected to characterize the multi-hazard landscape of the EAR. The 16 natural hazards are 

associated with at least one of the EM-DAT disasters displayed in Figure 3.3 and have an overall 

relevance score of at least ***.  

 

The 16 hazards retained, their abbreviations and relevance regarding each criterion are listed in 

Table 3.1. Natural hazards with very high impact and very low probability (e.g., extreme solar 

eruption), low impact and high probability (e.g., fog), low spatial relevance (e.g., volcanic 
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eruption) and not directly threatening energy infrastructures (e.g., avalanches) were ruled out 

during the screening process. Soil moisture excess and landslide were retained despite having a 

potentially low impact on energy infrastructure (Figure 3.1) because they play an important role 

in hazard cascades and flood generation (Gill and Malamud, 2014; Berghuijs et al., 2019). There 

are some differences between the hazards selected in this chapter, and the ones used in Chapter 

2; hazard categories are however identical to the ones presented in Chapter 2. Even if these are 

not equally threatening different parts of the Atlantic region, the 16 hazards selected are believed 

to be relevant to define the multi-hazard landscape of the European Atlantic region.  

Table 3.1: The 16 hazards relevant to the EAR considered in this chapter broken up into four natural hazard 

categories: (1) geophysical, (2) atmospheric, (3) hydrological, (4) biophysical. Relevance scores are displayed for 

(i) frequency of occurrence; (ii) spatial relevance; (iii) impact on energy infrastructure. The overall relevance is 

the sum of the 3 relevance scores.  

Hazard categories Hazards Abbreviation (i) (ii) (iii) 
Overall 

relevance 

Geophysical 

1.1 Earthquake EQ * * ** **** 

1.2 Landslide LS * ** - *** 

Atmospheric 

2.1 Lightning LI ** * * **** 

2.2 Extreme rainfall RA ** ** ** ****** 

2.3 Extreme wind WI ** ** * ***** 

2.4 Extreme hot 

temperature 
EH ** * ** ***** 

2.5 Extreme cold 

temperature 
EC ** * ** ***** 

2.6 Hail HA ** * * **** 

2.7 Extreme snowfall SN * * * *** 

Hydrologic 

3.1 Storm surge SS * ** ** ***** 

3.2 Extreme waves WA * * * *** 

3.3 Riverine Flood FL ** ** ** ****** 

3.4 Tsunami TS * ** ** ***** 

3.5 Drought DR * ** * **** 

3.6 Soil moisture excess SO * ** - *** 

Biophysical 4.1 Wildfire WF ** ** * ***** 
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 Multi-hazard networks in the European Atlantic Region 

In Chapter 2, interrelations between 14 natural hazard types have been considered in pairs. In 

this chapter, the aim is to define events that include different natural hazards that are interrelated, 

i.e. multi-hazard networks. Multi-hazard networks are based on (i) physical drivers of the single 

hazards or the hazard interrelations (e.g., meteorological, geophysical) and (ii) the interrelations 

between those hazard types (see Chapter 2). A multi-hazard network is therefore composed of a 

set of interrelated hazards prone to be triggered by the same underlying processes and occurring 

in given space-time frame. In a univariate study of extreme events, the need for independent 

extremes is often motivated by the development of methods to identify and characterize 

independent events. For example, Bernardara et al. (2014) developed a framework to identify 

independent physical events such as storms, floods, and heatwaves (Bernardara et al., 2014; 

Mazas and Hamm, 2017). This present work aims to enlarge this framework to the multi-hazard 

cases. In this section, the procedure used to create multi-hazard networks is presented (Section 

3.4.1). Then, the five multi-hazard networks developed for the EAR are presented (Section 3.4.2). 

Finally, these multi-hazard networks are illustrated with a database of past occurrences of major 

multi-hazard events in the EAR (Section 3.4.3). Multi-hazard events are past occurrences of 

multi-hazard networks (even partial). 

 Defining multi-hazard networks 

To sketch different multi-hazard networks, physical drivers that influence the occurrence of 

different single natural hazard types were examined. Depending on the hazards considered in this 

chapter (Table 3.1), physical drivers for multi-hazard networks can be linked to (i) 

hydrometeorological conditions, (i) geophysical conditions, (iii) both hydrometeorological and 

geophysical conditions. Multi-hazard networks as defined in this thesis can be related to concepts 

developed over the last two decades: 

− Predictors (e.g., precipitation, sea level pressure): to model compound flooding event 

(Bevacqua et al. 2017).  

− Trigger factors: to estimate both the frequency and magnitude of multiple natural hazards 

(Liu et al. 2016). 

− Scenarios: to analyse volcanic eruptions (Selva et al., 2019), tsunamis (Tinti et al., 2003), 

or earthquakes (Schmidt et al., 2011). 

− Physical events: to sample independent extreme events (Mazas and Hamm, 2017) 

− Generic events: The Integrated Research on Disaster Risk (IRDR) Data Report on Perils 

Classification and Hazards Glossary is the result of a global effort to classify natural 

hazards on different levels and to group hazards or perils into sets of generic events 

(IRDR, 2014).  
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From the IRDR (2014) data report and Figures 3.1–3.3, it is possible to identify the following 

multi-hazard networks: 

− Extratropical cyclone (hydrometeorological) 

− Convective storm (hydrometeorological) 

− Ground motion (geophysical) 

Extratropical cyclones and convective storm are two distinct storm systems, which can be 

distinguished from one another by their mechanism of development (growth), their structure, their 

spatial scale and their typical lifetime (Frame et al., 2017). Another way to identify multi-hazard 

networks is to examine the relationships between natural hazards (See Chapter 2). For example, 

heatwaves and drought are interrelated with a compound interrelation and change conditions for 

wildfires (Tilloy et al., 2019; Sutanto et al., 2020). Following this approach, it is, therefore, 

possible to derive two more multi-hazard networks: 

− Compound dry hazards (hydrometeorological) 

− Compound cold hazards (hydrometeorological) 

Every hazard listed in Table 3.1 belongs to one (or more) of the five multi-hazard networks 

defined previously. The five multi-hazard networks used in this thesis and the natural hazards that 

these include are summarized in Figure 3.4. 
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Figure 3.4: The five multi-hazard networks discussed in Chapter 3 (convective storm, compound and dry 

hazards, ground movement, mid-latitude cyclone, compound cold hazards) and associated hazards broken up 

into four natural hazard categories: (1) geophysical, (2) atmospheric, (3) hydrological, (4) biophysical. 

The allocation of each natural hazard to a multi-hazard network is based on both prior knowledge 

of hazard interrelations (Gill and Malamud, 2014; Tilloy et al., 2019) and on theoretical 

knowledge about the attributes of defined multi-hazard networks (e.g., convective storm are often 

associated with lightning and/or extreme precipitation). Justification of this classification and 

evidence of its relevance are provided in Section 3.2.2 and Section 3.4.1. It is important to note 

that some natural hazards belong to several multi-hazard events; for example, extreme rainfall 

and extreme wind are both part of mid-latitude cyclones and convective storms. The relationship 

between those two hazards differs regarding the multi-hazard networks to which they belong.  

 

Once multi-hazards networks and their associated hazards are defined, one can focus on the nature 

of the interrelations between the hazards and the interrelations network. Networks have often been 

used to represent multiple interrelations between natural hazards and other risk factors (Liu et al., 

2015; van Westen and Greiving, 2017; Terzi et al., 2019). Here, the results and evidence from 

Chapter 2 are used to develop interrelation networks for each of the five multi-hazard events. 
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These networks include the three main types of interrelations discussed in Chapter 2: (i) 

triggering, (ii) change condition and (iii) compound. Networks also provide useful support for the 

design of multi-hazard scenarios or pathways (Schauwecker et al., 2019). 

 Multi-hazard Networks  

In this section, an overview of the causes, dynamics and seasonality of the five multi-hazards 

networks is provided, along with conceptual hazard interrelation networks. Primary assumptions 

about hazard interrelations within each multi-hazard networks are mainly based on previous work 

from Gill and Malamud (2014) and results from Chapter 2. Detailed descriptions of each hazard 

interrelation are backed with evidence from the literature. Sources used to design networks of 

natural hazards associated with each of the five multi-hazard networks presented in Figure 3.4 

are displayed in Table 3.2. 
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Table 3.2: Supporting literature used in the design of the five multi-hazard networks. Sources are mostly peer-

review articles and reports from organisations.  

Multi-hazard networks Supporting Literature 

Ground Motion Rodríguez et al. (1999); Keefer (2002); Malamud et al. (2004); Gill and 

Malamud (2014); Deker and Brinkman (2014); Geist and Parsons 

(2006); Suppasri et al. (2012); ETI (2019); Geist et al. (2009); Clague 

and Stead (2012); DEFRA (2005); Chester (2001); Fritsche and Fäh 

(2009); Dutykh et al. (2011); Fan et al. (2019) 

Convective Storm Gill and Malamud (2014); Decker and Brinkman (2015); Price and 

Federmesser (2006); Simon et al. (2017); Piepgrass et al. (1982); Carey 

et al. (2003); Schultz et al. (2011); Anderson and Klugmann (2014); 

Iordanidou et al. (2016); Gatlin and Goodman (2010); Lang and 

Rutledge (2002); Koutroulis et al. (2012); Houze and Hobbs (1982); 

Jebson (2007); Dotzek et al. (2009); Poljansek el al. (2017) 

Extratropical Cyclone Gill and Malamud (2014); Deroche et al. (2014); Roberts et al. (2014); 

Dowdy and Catto (2017); Sharkey (2018); Priestley et al. (2018); 

Ulbrich et al. (2009); Hawcroft et al. (2012); Schoenenwald (2013); 

Weiss (2014); Haigh et al. (2016); Bogaard et al. (2013); CCR,2020, 

Eden (2008), Poljansek el al. (2017) 

Compound Dry hazards Sutanto et al. (2020); Zscheischler and Seneviratne (2017); Vogel et al. 

(2020); Radovanovic et al. (2019); Perkins (2015); Alexander (2011); 

EFFIS (2020); Tedim et al. (2018); Pereira et al. (2011); Ganteaume et 

al. (2013); Stefanon et al. (2012); Ruffault et al. (2020); Turco et al. 

(2019), Poljansek el al. (2017), Manning et al. (2018, 2019) 

Compound Cold Hazards Twardosz and Kossowska-Cezak (2016); Añel et al. (2017); Hulme and 

Barrow (1997); Hall and Blöschl (2018); Berghuijs et al. (2019); Booth 

(2007); Schauwecker et al. (2019); Eden (2008); Hillier et al. (2020); 

Gill and Malamud (2014) 

 

In this section, the five multi-hazard systems presented in Figure 3.4 will be examined in detail. 

For each multi-hazard system, four different aspects will be discussed as follows:  

− A definition of the system is provided; 

− Hazard interrelations within the system are described;  

− The spatial extent of the event is discussed;  

− Seasonality (when applicable) and temporal extent of the multi-hazard network are 

evaluated.  
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3.3.2.1 Ground movements 

Definition 

Ground movements are events where substantial quantities of material (soil or water bodies) are 

displaced by geomorphic phenomenon. Such events are generally associated with earthquakes. 

Earthquakes are the ground shaking due to the movement of the Earth’s tectonic plates at a fault 

zone (Alexander, 1993). Earthquake magnitude and depth are the main factors of landscape 

disturbance and play a major role in landslide distribution (Fan et al., 2019). However, ground 

movements can occur without being directly associated with an earthquake (e.g., the 1979 Nice 

Tsunami) (Dan et al., 2007). 

 

Hazard interrelations 

Hazards from Table 3.1 associated with a ground motion multi-hazard network are earthquakes, 

landslides and tsunamis. Besides triggering other earthquakes (aftershocks), the ground motion 

induced by an earthquake can either trigger or increase the probability of landslide by reducing 

soil cohesion. The relationship between earthquake and landslides is now well documented 

(Rodríguez et al., 1999; Keefer, 2002; Malamud et al., 2004), but it is still hard to quantify due 

to the complexity and the number of factors involved (e.g., earthquake magnitude, earthquake 

depth, geology, slope gradient). The primary triggers of tsunamis are earthquakes (Geist and 

Parsons, 2006; Suppasri et al., 2012), land and submarine landslides (Geist et al., 2009), although 

these can also be triggered by impact events (Pierazzo and Artemieva, 2012). However, tsunamis 

also trigger landslides when reaching the coastline (Clague and Stead, 2012). Landslides have the 

potential to trigger and change the conditions for other landslides (Gill and Malamud, 2014). 

Moreover, earthquakes, landslides and tsunamis can also damage human infrastructures, such as 

dam breaking or watercourse containment failure, and the failure of bridges. The network of 

natural hazard interrelations corresponding to a ground movement multi-hazard network is 

displayed in  Figure 3.5. The relationships between those hazards were assessed qualitatively 

according to the reviewed literature.  
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Figure 3.5: Network of natural hazards associated with a ground movement multi-hazard networks with their 

interrelation types. The associated hazards include EQ (earthquakes), LS (landslides) and TS (tsunamis). 

Arrows (see legend) indicate compound, change condition and triggering interrelations between the hazards. 

Built according to hazard matrices developed in Chapter 2, Gill and Malamud (2014) and literature in Table 

3.2. 

 

Spatial extent 

Ground movement events develop over variable areas. The level of shaking during an earthquake 

is related to the distance from the epicentre, the magnitude but also the ground conditions (ETI 

(Energy Technologies Institute), 2018). The total area of all landslides triggered by earthquake 

scales with the earthquake magnitude (Malamud et al., 2004; Meunier et al., 2007). The spatial 

extent of the earthquakes and the aerial region over which subsequent landslides occur also 

depends on the magnitude of the earthquake. Tsunamis pose a threat to European coasts (Chester, 

2001); however, the potential spatial extent of a tsunami generated by an earthquake or a landslide 

is believed to be relatively local (DEFRA, 2005; Lambert and Pedreros, 2012). 

 

Temporal extent & seasonality 

Ground movements associated with the direct energy of earthquakes are usually short-duration 

events. Nonetheless, significant earthquakes are often followed by aftershocks (Fritsche and Fäh, 

2009) which modify the temporal frame of such events. Earthquake-triggered landslides generally 

occur in the minutes to hours after the ground shaking (Fan et al., 2019). However, the 

consequences of large continental earthquakes can be observed years to centuries after they occur 

(Fan et al., 2019). The arrival time of a tsunami on a coast mostly depends on the distance from 

the origin of the tsunami (DEFRA, 2005; Dutykh et al., 2011). 
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3.3.2.2 Convective storms 

Definition 

A convective storm is a meteorological event, primarily controlled by moisture, temperature, and 

upward wind (Dotzek et al., 2009). Also called thunderstorms, those events develop when warm 

air is trapped underneath much colder air. The warm, containing more humid, air rises, water 

vapour condenses in small droplets and clouds called cumulonimbus are formed (Jebson, 2007). 

Mostly occurring during the summer season, or warm times of the year, convective storms can be 

divided into different types (Houze and Hobbs, 1982; IRDR, 2014): 

− Multi-cell storms: A system composed of several convective cells. 

− Squall line: A group of storms arranged in a line. 

− Supercell: A system composed of one massive convective cell, which can last more than 

one hour. 

− Mesoscale Convective System (MCS): A collection of thunderstorms that can cover a 

wide area and last several hours. 

− Derecho: A long-period windstorm associated with thunderstorms. 

 

Hazard interrelations 

A prevailing natural hazard within a convective storm is lightning. Indeed, the electrical activity 

at the origin of lightning results from convective processes. Lightning can be used as a proxy for 

thunderstorms (e.g., Price and Federmesser, 2006; Simon et al., 2017) and has been used to track 

thunderstorms (Strauss et al., 2013), to identify them (Gatlin and Goodman, 2010), or for 

nowcasting (Schultz et al., 2011). Lightning has the potential to initiate wildfires during dry 

thunderstorms (García-Ortega et al., 2011). Convective storms can also be marked by heavy 

precipitation. The relationship between extreme rainfall and lightning has been analysed using 

linear regressions (Piepgrass et al., 1982), or the squared Pearson correlation coefficient 

(Iordanidou et al., 2016) with different spatial scales, temporal windows and time lags. Heavy 

precipitation can trigger river flooding or landslides (Jaroszweski et al., 2015; Schauwecker et 

al., 2019). During a convective storm, extreme wind can also occur, these wind are usually called 

downburst (Dotzek and Friedrich, 2009). A downburst was defined as a strong downdraft that 

induces an outburst of damaging winds on or near the ground (Fujita, 1978). Downbursts usually 

have small spatial and temporal scales; however, the wind speed in those wind event can reach 

greater than 200 km h-1 (Fujita, 1990). Hail also frequently occurs during thunderstorms (Punge 

and Kunz, 2016). Despite not systematically co-occurring, these hazards are all associated with 

convective storms. Figure 3.6 represents a synthetic network of the natural hazards involved in a 

convective storm. The relationships between those hazards were assessed qualitatively.  
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Figure 3.6: Network of natural hazards associated with a convective storm with their interrelation types. Arrows 

and arcs (see legend), indicate compound, change condition and triggering interrelations between the hazards 

Built according to hazard matrices developed in Chapter 2, Gill and Malamud (2014) and literature in Table 

3.2. 

Spatial extent 

Depending on the type of convective event, thunderstorms could be localized (multi-cell storm) 

or extend up to hundreds to thousands of square kilometres (mesoscale) (Hand et al., 2004; Frame 

et al., 2017).  

 

Temporal extent & seasonality 

It has been shown that a ‘‘typical’’ convective event lasts approximately 1 h (Lang and Rutledge, 

2002). Piepgrass (1982) found an average duration of 107 minutes for a convective event. 

However, thunderstorms do not always occur in isolation and can be grouped in mesoscale 

complexes. It has been shown (Morel and Senesi, 2002) that in Europe, Mesoscale Convective 

Systems last on average 5.5 hours and can last up to more than 20 hours. Convective storms are 

more likely to occur during the warm season as they are related to the convection process. In the 

UK, it corresponds to the summer months and the beginning of autumn (Anderson and Klugmann, 

2014). 
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3.3.2.3 Extratropical cyclone 

Definition 

Extratropical cyclones (also called mid-latitude storms) are meteorological features occurring in 

the midlatitudes of the earth (Catto, 2016). Midlatitudes are between latitude 23° and 66° in both 

the northern hemisphere and southern hemisphere. In Europe, these events mainly occur during 

the “extended” winter (ONDJFM) (Ulbrich et al., 2009; Deroche et al., 2014; Roberts et al., 

2014). Extra-tropical cyclones are low-pressure systems that usually form at the interface between 

warm and cold air masses (Catto, 2016). This interface, a front, then develops into a wave shape 

(Dowdy and Catto, 2017; Sharkey, 2018). Extra-tropical cyclones have historically brought 

widespread damages to western Europe, because of their associated hazards but also because they 

tend to occur in series (Frame et al., 2017; Priestley et al., 2018). 

 

Hazard interrelations 

The passage of extratropical cyclones is usually associated with strong winds and heavy 

precipitation (Ulbrich et al., 2009; Frame et al., 2017). Indeed, in many parts of western Europe, 

over 70% of total precipitation is associated with extratropical cyclones (Hawcroft et al., 2012). 

Heavy precipitation during extra-tropical cyclones, which often occur on already saturated soils 

in winter (e.g., winter 2020 in Great Britain), triggers floods and landslides in mountainous areas 

(e.g. Storm Klaus, 2009). However, the intensity of extra-tropical cyclones and their impacts have 

historically been measured with its associated wind speed (Schoenenwald, 2013). In the ocean, 

extreme wind trigger waves that can cause severe damages to coastlines (Weiss, 2014; Haigh et 

al., 2016). Storm surges, partly due to the low atmospheric pressure over a broad area of the ocean 

and the wind of the storm pushing the subsequent higher level of water in the ocean, can result in 

extreme waves to cause coastal flooding and landslides (Bogaard et al., 2013). In 1999, after 

storms Lothar and Martin, numerous natural dams composed of unrooted trees were reported in 

South-west France, increasing the risk of river flooding (CCR,2020). On some occasions, flashes 

of lightning may also occur in the frontal regions associated with extratropical cyclones (Frame 

et al., 2017). Figure 3.7 represents a synthetic network of the natural hazards involved in an 

extratropical cyclone. The relationships between those hazards were assessed qualitatively. 
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Figure 3.7 Network of natural hazards associated with an extratropical cyclone with their interrelation types. 

Arrow and arcs (see legend), indicate compound, change condition and triggering interrelations between the 

hazards Built according to hazard matrices developed in Chapter 2, Gill and Malamud (2014) and literature in 

Table 3.2. 

Spatial extent 

In meteorology, extra-tropical cyclones form and develop on a synoptic scale (≈ 1000km in 

diameter) (Catto, 2016). Nevertheless, the spatial extent of such events can vary. The severity of 

an extratropical cyclone can be measured with the Storm Severity Index (SSI), which depends on 

the extent, duration and intensity of the extreme wind (Leckebusch et al., 2008; Soubeyroux et 

al., 2017). Extra-tropical cyclone can lead to widespread damage from multiple hazards (e.g., 

storm surge, river flooding) at different places (Met Office, 2015; Catto, 2016; Hendry et al., 

2019). The spatial extent is, therefore a significant component for storm severity. The spatial 

extent of the impact of a mid-latitude cyclone also depends on its trajectory (Merz et al., 2020) 

(e.g., a track crossing France and Germany vs. a track passing north of Scotland) .  

 

Temporal Extent and seasonality 

It usually takes an extratropical cyclone one to five days to cross western Europe (Schoenenwald, 

2013; Roberts et al., 2014). The duration of those events also influences storm severity. As stated 

above, extra-tropical cyclones mostly occur during an extended winter season and are often called 

winter storms. 
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3.3.2.4 Compound dry hazards 

Definition 

A compound dry hazards event is a hydrometeorological feature that involves several dry hazards 

(Sutanto et al., 2020). This multi-hazard network is a threat to most parts of the world. However, 

its prevalence in Western Europe is likely to increase in a warming world (Zscheischler and 

Seneviratne, 2017; Vogel et al., 2020). In Europe, compound dry hazards events usually occur 

during the summer season. Hazards involved in a compound dry hazards event can have different 

drivers (e.g., long term precipitation deficit, anticyclonic conditions), but their interrelations are 

of prior interest to assess the severity of the event (Manning et al., 2018, 2019; Hao et al., 2020).  

 

Hazard interrelations 

Hazards associated with a compound dry hazards event are often extreme hot temperature (heat 

waves), drought and wildfire. In some regions, extreme winds are sometimes associated with dry 

hazards events (Radovanovic et al., 2019). In the summer months, dry conditions (low air 

moisture) are often associated with high air temperature. Sustained hot air temperatures for 

several days are called heat waves (Perkins, 2015). The severity of a heatwave can partly be 

explained by pre-existing dry soils (Alexander, 2011), while extreme hot temperatures exacerbate 

drought (Perkins, 2015; Manning et al., 2018). Hot and dry conditions set the scene for wildfires 

in many parts of Europe, with severely hot and dry summers coinciding with devastating wildfire 

seasons (EFFIS, 2020). The wind is also a key driver for wildfire propagation (Tedim et al., 2018) 

and can be associated with hot and dry conditions (e.g., Foehn wind). The synthetic network of 

hazard interrelations for a compound dry event is displayed in Figure 3.8. 

 

 

 

Figure 3.8 Network of natural hazards associated with a compound dry event with their interrelation types. 

Arrows and arcs (see legend), indicate compound, change condition and triggering interrelations between the 

hazards. Built according to hazard matrices developed in Chapter 2, Gill and Malamud (2014) and literature in 

Table 3.2. 
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Spatial extent 

The spatial extent of compound dry hazard events highly varies, similarly to the spatial extent of 

its associated hazards. Drought and heatwaves can spread on vast areas (>106 km2), with the most 

severe ones developing over the entire Atlantic region (e.g., 2003) (Rebetez et al., 2009; Corzo 

Perez et al., 2011; Spinoni et al., 2019). A single wildfire can devastate up to hundreds of km2  

(Pereira et al., 2011). 

 

Temporal extent and seasonality 

Compound dry hazards events usually last at least several days and up to years (Perkins, 2015; 

Manning et al., 2019; Spinoni et al., 2019). In the EAR, periods of extreme hot temperature can 

occur successively during the summer, between May and September, exacerbating an underlying 

drought (Fink et al., 2004; Miralles et al., 2014). Drought, particularly in the Iberian peninsula, 

can last up to several years (Stefanon et al., 2012). The duration of a wildfire highly depends on 

its location, other natural hazards and human factors (Pereira et al., 2011; Ganteaume et al., 2013).  

 

3.3.2.5 Compound Cold hazards 

Definition 

A compound cold hazards event is a hydrometeorological feature that involves several winter 

hazards. This multi-hazard event is usually initiated by a period of unusually cold weather. During 

the European winter, a typical pattern of atmospheric circulation, leading to very cold winters is 

an inflow of cold air from the north or east (Twardosz and Kossowska-Cezak, 2016). However, 

these prolonged cold conditions and their associated hazards cause multiple threat to critical 

sectors of society, such as energy production of transportation (Añel et al., 2017).  

 

Hazard interrelations 

Hazards associated with compound cold hazards are extreme cold temperature (cold wave), 

extreme snowfall, extreme wind and sometimes widespread riverine flood (Eden, 2008). Extreme 

cold temperature and continuous periods of frost create the conditions for snow to fall and stick. 

The snow can be brought by different weather systems and often associated with strong winds, 

bringing the apparent temperature down due to the wind-chill effect (Hulme and Barrow, 1997). 

However, strong winds can also be associated with anticyclonic dry conditions in some regions 

(e.g., Mistral in the Rhone Valley) (Blanchet, 1990; Petroliagkis, 2018). The accumulation of 

snow over large areas can trigger thaw floods as snowmelts is a primary flood-generating 

mechanism (Hall and Blöschl, 2018; Berghuijs et al., 2019). The synthetic network associated 

with compound cold events is displayed in Figure 3.9. 
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Figure 3.9 Network of natural hazards associated with a compound cold event with their interrelation types. 

Arrows and arcs (see legend), indicate compound, change condition and triggering interrelations between the 

hazards. Built according to hazard matrices developed in Chapter 2, Gill and Malamud (2014) and literature in 

Table 3.2. 

Spatial extent 

The spatial extent of a compound cold hazards event generally depends on synoptic-scale weather 

processes. Similarly to heatwaves, cold waves can develop over vast areas (>106 km2), with the 

most severe ones developing over the entire Atlantic region (e.g., winter 1962–1963) (Lhotka and 

Kyselý, 2015). While more localized, heavy snowfall and consequent flooding can also occur on 

a relatively large scale with variable severity (Eden, 2008).  

 

Temporal Extent 

Compound cold hazards events can last from days to months, depending on synoptic weather 

conditions. This group of multi-hazard networks is often characterized by a succession of “short” 

events bringing snow and wind within an underlying long-lasting cold wave (Eden, 2008). The 

duration of such events has a significant role in their severity. Indeed, the accumulation and 

perseverance of snow and extremely cold temperature over time can significantly impact many 

aspects of society (Booth, 2007; Añel et al., 2017). Nevertheless, compound cold hazards events 

can cause widespread disruption and damage in a very short period (e.g., Catalonia, March 2010) 

(Schauwecker et al., 2019).  

 Characterising multi-hazard events 

To illustrate the event-based approach and characterize more precisely the five multi-hazard 

networks presented in Section 3.3, I search for past occurrences of natural hazards presented in 

Table 3.1 in the EAR and directly surrounding regions during the period 1755 to 2019. A 

catalogue of historic multi-hazard events is then developed (Section 3.4.1). Blended sources of 

information such as catalogues providing qualitative (hazards associated, area impacted) and 

semi-quantitative (duration, the magnitude of the event) information about past occurrences of 
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natural hazards are used to create this catalogue. Features of multi-hazard events presented in the 

catalogue are then discussed; dominant hazards and dominant hazard interrelations are identified 

within the five multi-hazard networks (Section 3.4.2). Information about the spatial and temporal 

scales of multi-hazard events are also compiled and analysed. Building on this semi-quantitative 

knowledge, an overview of available free datasets that can be used to analyse MH events is 

provided in Section 3.4.3. These datasets are divided into three types: (i) In-situ Observations 

(Section 3.4.3.1), (ii) Model outputs (Section 3.4.3.2) and (iii) Satellite observations (Section 

3.4.3.3). The relevance of each type of data to study multi-hazard is then examined. 

 Historic multi-hazard events catalogue 

To provide evidence for the conceptual multi-hazard networks presented in Section 3.3, a 

catalogue of historic multi-hazard events containing a total of 50 events (10 for each of the five 

multi-hazard networks previously presented) is created. This catalogue also aims to bring together 

different sources and databases of single hazard events. To build this catalogue, I used a variety 

of sources for each natural hazard refined with country names and the words “database” or 

“catalogue”. Most of the sources reviewed account for single hazards or simply mention the 

occurrence of other hazards. Evidence used to build the historic major multi-hazard events 

catalogue comes from a range of source types and are accessible in Appendix Table C2 and 

Appendix Table C3: 

(i) Single hazards catalogues (e.g., tsunami (BGS, 2018), storm surge (Haigh et al., 2015)  

(ii) Catalogue of reported hydrometeorological events (e.g., Met Office (2020), Infoclimat 

(2020))  

(iii) Disaster databases (e.g., EM-DAT (2018)) 

(iv) Peer review articles and books 

 

A total of 32 catalogues providing reports on time, location and magnitude of hazards presented 

in Table 3.1 are reviewed and accessible in Appendix Table C2. These catalogues spatially range 

from national to global and temporally range from 4000 years (NOAA Tsunami database) to 13 

years (Floodlist). To create the multi-hazard catalogue, high magnitude single hazard events 

which have the potential to be multi-hazard events (e.g., flash flood) are identified. To do this, I 

also consider peer review articles focusing on one high impact hazard events (e.g., the great storm 

of 1987 in the United Kingdom). By crossing different sources, evidence supporting the 

occurrence of several hazards during the same event are assembled (e.g., extreme wind, extreme 

rainfall and river flooding for the great storm of 1987). The discrimination criterion for an event 

to be part of the catalogue is that it is mentioned in either: 

(i) at least two of the 32 catalogues; 

(ii) in one catalogue and one peer review articles on high impact hazard event.  
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For each of the five multi-hazard networks discussed in Section 3.4.2, ten major historical events 

are identified with the method mentioned above. Additionally, the hazards, the interrelations that 

might have occurred, the spatial extent, and the duration of each multi-hazard event are identified. 

I consider that the multi-hazard events presented in the catalogue (Table C1) are representative 

of a broad range of possible hazard interrelations within each of the five multi-hazard networks. 

In addition to the time and location of occurrence of the event, hazards and interrelations involved 

(e.g., change condition) (from Section 4.2), are identified. Estimations of the spatial and temporal 

scales of the events are also reported. The spatial scale corresponds here to the total footprint of 

the event, which is represented by the total area with reported impact in the sources reviewed. 

The spatial footprint is reported on a semi-quantitative scale including four categories: local 

(5100 to 5103 km2), regional (5103 to 5104 km2), multi-regional (5104 to 5105 km2) and 

continental (5105 to 5106 km2). The duration of events is also extracted from the reviewed 

literature, is expressed in days and is also associated with the duration of reported impacts. For 

short events such as convective storms or earthquakes, the duration is set to 1 day when no explicit 

duration is reported. For large scale moving systems such as large-scale extratropical cyclones, 

the duration represents the time during which different hazard occurred over the EAR, but not the 

whole lifespan of the storm.  

 

Most of the 50 events displayed in Appendix Table C1 had been recorded as “single” hazard 

events in reviewed catalogues (Appendix Table C2). In some cases, they can be justified by the 

predominant influence of one of the hazards on the damages caused (e.g., wind in Storm Martin). 

Each multi-hazard event displayed in Table C1 does not include the same number of hazards or 

interrelation. For example, the number of hazards associated with an extratropical cyclone varies 

between two and six within the catalogue. The number of interrelations within events is also 

variable. Among the 50 events in the multi-hazard catalogue (Table C1), 44 occurred within the 

EAR and 47 in one of the ten countries over which the EAR is distributed. The three events which 

did not occur in one of these 10 countries occurred in neighbouring countries (Switzerland, Italy) 

and are ground movement events that are relatively rare in the EAR. However, these three events 

illustrate the approach taken here.  

 Hazard interrelations and attributes of multi-hazard networks 

From Appendix Table C1, I analyse hazard interrelations to identify dominant hazards and 

dominant hazard interrelations within the five multi-hazard networks. Dominant hazard and 

dominant hazard interrelations are defined as follows: A dominant hazard is the most likely to 

occur and the most interconnected hazard within a multi-hazard network. A dominant hazard 

interrelation is the most likely to occur within a multi-hazard network. 
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Figure 3.11 displays interrelations within the 10 convective storm events from the catalogue 

(Appendix Table C1) with a chord diagram. Chord diagrams show the interrelationship between 

entities (here natural hazards). Nodes representing entities are arranged along a circle. The 

relationship between each node is represented with arcs within the circle. The importance of each 

connection is represented proportionally by the size of each arc. Usually, chord diagrams are used 

to visualize the flow of connection between one half of the circle and the other half. In Figure 

3.10, it is not the case as the circle circumference is filled with hazards (sorted by hazard 

categories) which composes the convective storm multi-hazard network. Therefore, the values on 

the circumference of each chord diagram represent double of the cumulative number of hazard 

interrelations that occurred. The types of interrelations are displayed by the colour of the arcs 

between two nodes. The size of the arcs is proportional to the importance of the connection in the 

multi-hazard events catalogue. When two hazards can be interrelated with two different 

interrelation types (e.g., a landslide can either trigger or change conditions for river flood), the 

filling and the outside line are from two different colours. Arrows are used to represent the 

direction of the “hazard cascade” when relevant (i.e., triggering and change conditions 

interrelations).  

 

Figure 3.10 Chord diagram of hazard interrelations within a convective storm multi-hazard network using the 

multi-hazard events catalogue.  

For example, in Figure 3.10, extreme rainfall (RA) is interrelated to other hazards 24 times within 

the ten convective storms in the catalogue displayed in Appendix Table C1. Extreme rainfall 

triggers river flooding (FL) on eight occasions and landslides (LS) seven times. Extreme rainfall 

also has compound interrelations with lightning (five occurrences), hail ( three occurrences) and 

extreme wind (one occurrence). Hazard interrelations during the 10 events of each multi-hazard 

network are mapped using chord diagrams displayed in Figure 3.11, similar to Figure 3.10.  
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Figure 3.11: The number of hazard interrelations within the multi-hazard events catalogue for each category 

using chord diagrams. (a) Ground motion, (b) Convective storm, (c) Extra-tropical cyclone and (d) Compound 

dry and (e) Compound cold. Abbreviations for natural hazards are given in Table 1. Earthquake (EQ), landslide 

(LS), tsunami (TS), extreme rainfall (RA), extreme wind (WI), hail (HA), lightning (LI), river flooding (FL), 

extreme waves (WA), storm surge (SS), soil moisture excess (SO), extreme hot temperature (EH), wildfire (WF), 

drought (DR), extreme cold temperature (EC), extreme snowfall (ES). 

 

From Appendix Table C1and Figure 3.11, one can observe the following: 

− Ground motion events can include up to three different hazards. Earthquake is the 

dominant hazard as it triggers tsunamis, landslides and other earthquakes and is involved 

in 75% (12/16) of the interrelations. The remaining 25% (4) of the interrelations are 

landslide triggering tsunamis. For that network, hazards only occur by pairs in our 
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catalogue (EQ-LS, LS-TS, EQ-TS) and there are only cascading interrelations (i.e., 

triggering, change condition). 

− Convective storms can include up to six interrelated hazards. The dominant hazard in the 

set of events (Table C1) is extreme rainfall (involved in 67% (24/36) of the hazard 

interrelations) which is the only hazard having at least one interrelation with all other 

hazards of the network and is making the link between two unrelated groups of hazard 

within a convective storm: a “compound” network (LI, HA, WI) and a “cascade” network 

(FL, LS). There is no event including the six hazards in the 10 events in our catalogue, 

but rather different combinations.  

− Extratropical cyclones can include up to seven different natural hazards. Extreme rainfall, 

extreme waves and extreme wind are dominant hazards in such events. These three 

hazards account for 86% (24/28) of the hazard interrelations recorded in the catalogue for 

extratropical cyclones. All 10 events in the catalogue include either extreme wind or 

extreme rainfall and six include both. Similarly to extreme rainfall in convective storms, 

extreme wind makes the link between two groups of hazards in Figure 3.11.c “coastal” 

hazards (SS, WA) and “land” hazards (RA, LS, FL, SO) and is therefore the dominant 

hazard of the network. The combined occurrence of these two groups of hazards can result 

in compound flooding (Hendry et al., 2019).  

− In compound dry hazards events, the interrelation between extreme hot temperature and 

drought is prevalent as in accounts for 42% (11/26) of hazard interrelations and these two 

hazards are involved in 92% (24/26) of recorded interrelations in the catalogue. It is hard 

to distinguish a dominant hazard for this network, but one can rather acknowledge the 

influence of both extreme hot temperature and drought on the dynamic of compound dry 

hazard events. Among the 14 interrelations with wildfires, 2 are with wind, 7 with 

extreme hot temperature and 5 with drought, confirming the hypothesis that a 

combination of these three hazards rather than one might lead to wildfires. 

− In compound cold hazard events, extreme cold temperature is involved in 83% of hazard 

interrelations and is therefore the dominant hazard (10/12 interrelations). Extreme cold 

temperature sets the condition for extreme snowfall to occur (8/12 interrelations). In our 

catalogue, extreme cold temperature rarely occurs with extreme wind while extreme 

snowfall trigger river flooding on two occasions. 

 

Figure 3.11 provides semi-quantitative estimates of the interdependencies of different natural 

hazards within the five multi-hazard networks designed in Section 3.2. Dominant hazards and 

hazards interrelations of each multi-hazard networks are extracted from Figure 3.11 and Table 

C1 and are listed in Table 3.3.  
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Table 3.3: Dominant natural hazard and hazard interrelations for each of the five multi-hazard networks (EQ 

= Earthquake; LS = Landslide; TS = Tsunami; RA = Extreme rainfall; FL = River flooding; WI = Extreme 

wind; EH = Extreme hot temperature; DR = Drought; EC = Extreme cold temperature; ES = Extreme snow). 

Multi-hazard network Dominant hazard(s) Dominant interrelation(s) 

Ground movement Earthquake EQ – LS, LS – TS [Triggering] 

Convective storm Extreme rainfall RA – FL [Triggering] 

Extratropical cyclone Extreme wind RA – WI [Compound] 

Compound dry Extreme hot temperature, 

drought 

EH – DR [Compound, Change condition] 

Compound cold Extreme cold temperature EC – ES [Change condition] 

 

From Appendix Table C1, I analysed the spatial and temporal scales of each MH event groups. 

The spatial and temporal properties of multi-hazard events are displayed in Figure 3.12. Each 

multi-hazard network is represented by its symbol and colour. The spatial scale of multi-hazard 

events can take four discrete values: local, regional, multi-regional, continental, while duration is 

expressed in days. To prevent overplotting, data points obtained from Table C1 are jittered 

(offset) in both space and time. Figure 3.12 provides semi-quantitative information about the 

duration and spatial extent of the different multi-hazard networks. Scatter plots of each MH 

network are encircled, highlighting the inter-group variability in both duration and extend.  

 

 

Figure 3.12 Spatial and temporal scales of 50 multi-hazard events divided into five networks by colour: Ground 

Motion (GM), Convective Storm (CS), Extratropical Cyclone (ETC), Compound Dry (CD) and Compound Cold 

(CC). Shown on logarithmic axes are the spatial and temporal scales over which the 50 multi-hazard events. 

Here spatial footprint refers to the area that the hazard influences and temporal scale to the timescale that the 

single hazard acts upon the natural environment. To prevent overplotting, data points are jittered (offset) in 

both axes. 
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Convective storms and ground motion events are generally rapid events lasting less than a day 

(Figure 3.12), even if the impact to society or the environment caused by the hazards can last 

much longer (de Ruiter et al., 2020). While convective storms are limited to small areas, ground 

motion events generally occur on local to regional scales but can also affect large areas, 

particularly when tsunamis are involved. Extratropical cyclones reported in the MH catalogue 

develop over periods ranging from 1 to 3 days and generally occur over large areas and sometimes 

across several countries. The spatial extent of an extratropical cyclone depends on several features 

such as its central pressure or its track (Catto, 2016).  

 

Finally, compound cold and dry events are more slow-onset or long-lasting events and last from 

days to several months. Compound dry events, and particularly drought can influence large areas, 

but can also be more localized when extreme heat, drought and strong wind collide to trigger and 

fuel wildfires (San-Miguel-Ayanz et al., 2013; Tedim et al., 2018; Radovanovic et al., 2019). 

Spatial and temporal scales of compound cold and dry events are partly governed by atmospheric 

blocking pattern (Amraoui et al., 2015; Twardosz and Kossowska-Cezak, 2016; Dizerens et al., 

2017; Manning et al., 2019). The spatial and temporal scales of natural hazard interrelations will 

be further discussed in Chapter 5.  
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 Numerical Data for multi-hazard modelling 

In previous sections, hazards have been grouped in multi-hazard networks according to physical 

consideration and prior knowledge on natural hazard interrelations. Five networks have been 

defined and described (Section 3.3). Characteristics of events from each network have been 

analysed from a catalogue of 50 historic multi-hazard events (Section 3.4.1). Dominant hazards 

and hazard interrelations have been identified for each multi-hazard network, and spatial and 

temporal scales of such events have been discussed (Section 3.4.2).To quantitatively model the 

interrelations between different natural hazards, numerical data are necessary. However, the 

choice of datasets to analyse and quantify hazard interrelations is governed by various, and 

sometimes contradictory, factors including:  

(i) The availability of data for different hazards in a given region; 

(ii) The homogeneity in spatial and temporal resolutions between different hazard data;  

(iii) The need for spatial and temporal resolutions that can capture as accurately as possible 

the interrelation between hazard.  

 

In this section, 34 freely available datasets to study and model the five multi-hazard networks 

presented in Section 3.3 are reviewed (Appendix D). A focus is given on datasets relevant to the 

EAR and in particular to the two countries occupying the most of its area: France and the United 

Kingdom (both of which are the focus area of research in other chapters of this PhD). The aim of 

this review is not to identify every available dataset to study one of the 16 hazards in Table 3.1, 

but rather to provide a general overview of the different kinds of data available to study hazard 

interrelations within the five multi-hazard events groups presented in Section 5.4 along with 50 

case study events. For example, climate reanalysis data (See Section 5.3.3) produced by the 

ECMWF (European Centre for Medium range Weather Forecast) is reviewed while similar 

datasets generated from American (USA) and Japanese agencies are not. For more exhaustive 

overviews, the reader can refer to, for example, Beck et al. (2017) for precipitation datasets and 

Dorigo et al. (2017) for soil moisture datasets. Here we divide available data to study natural 

hazards into three types: in-situ observation (20 datasets), model outputs (7 datasets) and remote 

sensing (7 datasets). The specificities, strength and weaknesses of each type of dataset, along with 

their applicability to different natural hazards, are assessed. The relevance of different datasets 

for each multi-hazard network is also discussed. 

3.4.3.1 In-situ observation datasets 

In-situ observations are those made at the location of the instrument (Ehhalt, 1980). This includes 

sensors placed on the banks of rivers, carried on weather balloons or aeroplanes, drifting in the 

ocean on buoys and also encompasses data collected by citizen scientists. In-situ observation data 

are traditionally point observations made at a station where a sensor or instrument is located. The 

main advantage of in-situ observations is their ability to provide precise information at a local 
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scale with high temporal resolution (Ehhalt, 1980). To capture data from wider areas, a high 

number of stations are therefore required (Donat et al., 2014). To take advantage of the qualities 

of in-situ observations over a wide area, gridded datasets from the interpolation of station-derived 

meteorological observations have also been developed in recent years (Cornes et al., 2018). 

However, instrumental observations can be problematic due to sparse and inhomogeneous 

coverage and lead to biases due to instrumental errors (Ledesma and Futter, 2017).  

 

All of the natural hazards considered in this piece of work can be defined as extreme or unusual 

occurrences of an environmental variable (e.g., extreme hot temperature) which can be measured 

in-situ with instruments. In the present study 20 of the 34 numerical datasets reviewed are in-situ 

observation datasets. I found freely accessible datasets of in-situ observations for 15 of the 16 

hazards presented in Table 3.1 and data on earthquakes, landslides, hail and tsunami have only 

been recorded with in-situ observations in the 34 datasets reviewed. There are different possible 

scales or unit to study one natural hazard and therefore, different ways to measure their intensity. 

For example, one can study landslides by their area or count and even study the relationship 

between these two attributes (Malamud et al., 2004). Precipitation observations usually 

correspond to the quantity of water falling (measured in height) aggregated over a period which 

can vary from minutes to months. The relevance of the period depends here on the duration of the 

event to be characterized (e.g. extratropical cyclones vs convective storms).  

 

3.4.3.2 Remote sensing datasets 

Remote sensing is the obtaining of information from a distance (NASA, 2020). This is typically 

done from satellites or aircraft. There are two types of remote sensors, passive and active. A 

passive sensor uses energy naturally reflected by or emitted from the Earth's surface; these sensors 

measure properties such as land and sea surface temperature, vegetation properties, cloud and 

aerosol properties (NASA, 2020). Active sensors provide their own energy and record the amount 

of incident energy returned from the imaged surface (Melet et al., 2020) and include different 

types of radio detection and radars. These types of sensors are useful for measuring, among others, 

precipitation, winds and ice cover (NASA, 2020). Remote sensing (e.g., satellite observations) 

allows the capture of data from wide areas and are thus complementary to in-situ observations. 

However, satellite observations cannot always capture the level of resolutions required by users 

as they offer a larger picture (Melet et al., 2020).  

 

Environmental variables such as surface temperature, soil moisture and fire activity can be 

monitored or estimated with passive remote sensing (Sheffield et al., 2018; Brugnara et al., 2019; 

Lizundia-Loiola et al., 2020). Precipitation is estimated with radar measurements, while lightning 

strikes are remotely measured with lightning location systems (Anderson and Klugmann, 2014). 
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Floods, earthquakes and landslides can also be monitored with satellites (Sheffield et al., 2018; 

Cao et al., 2019), although I did not find freely available remotely sensed datasets for these 

hazards. Freely accessible remote sensing datasets for 6 of the 16 hazards presented in Table 3.1 

are reviewed in Appendix D. Overall, remote sensing datasets have antagonistic characteristics 

to in-situ observations. However, these two types of data can be combined and assimilated into 

models to create another type of datasets: model outputs datasets.  

 

3.4.3.3 Model outputs datasets 

Major atmospheric and oceanic processes have been numerically modelled for the need for 

meteorological forecasting (Brönnimann et al., 2018). These models can numerically estimate the 

state of the global climate. Climate Reanalyses are generated by combining model estimates of 

the state of the atmosphere, ocean cryosphere, land, and so forth, with data from a range of 

observing platforms (in-situ, remote sensing) by applying a method named data assimilation 

(Brönnimann et al., 2018; Hersbach et al., 2018). The advantage of climate reanalyses is that they 

produce environmental variables homogeneously distributed at a regional, global scale (Sutanto 

et al., 2020). Climate reanalysis data also provides estimates of variables than can hardly be 

measured (e.g., Convective available potential energy) which can be used to estimate the 

occurrence of natural hazards such as hail (Prein and Holland, 2018). The use of a climate 

reanalysis product to study extreme events induces several limitations in comparison to 

observational data (Donat et al., 2014; Angélil et al., 2016). In climate reanalyses, variables are 

computed over a grid box, and the resulting value is an average. This often leads to a smoothing 

of local extreme values (Donat et al., 2014). The accuracy of reanalysis data also depends on 

various types of observations (Hersbach et al., 2019). Similarly to climate reanalyses, 

hydrological reanalyses has been produced as an output of hydrological models, providing 

homogeneous data for river discharge and soil moisture regionally (Alfieri et al., 2014) and 

globally (Alfieri et al., 2020).  

 

Many hydrometeorological variables can be estimated from climate model outputs, including 

wind speed precipitation and soil moisture. Some outputs of climate reanalyses can be used 

directly to study natural hazards (Martius et al., 2016; Sutanto et al., 2020), while others are inputs 

for other models (hydrological, hydrodynamic) that provide estimates of other variables such as 

river discharge (Alfieri et al., 2020) or sea level (Petroliagis, 2018). In the present work, I 

reviewed 8 different model output datasets relevant to the Atlantic region. These datasets provide 

data for 11 out of the 16 hazards relevant to this study. Most of the hydrological and atmospheric 

hazards can be studied with model output datasets. The homogeneity of the data provided by 

climate and hydrological models made these increasingly popular to study multiple natural 

hazards (Martius et al., 2016; Petroliagis, 2018; Sutanto et al., 2020; Vogel et al., 2020). The 
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spatial and temporal resolution of model output data is still too coarse to analyse local events (e.g. 

convective storms). Still, the promising improvements made in recent years in this area suggest 

that this limitation could be overcome in the near future. 

3.4.3.4 Summary of the three types of numerical data 

The three types of numerical data relevant to natural hazards that are presented have strength and 

limitations, in particular regarding two aspects: spatial and temporal coverages and spatial and 

temporal resolution: 

− In-situ observation datasets provide in general local data with broad temporal coverages 

(Appendix D). Their spatial coverage is inhomogeneous and sparse in many regions of 

the world (Hou et al., 2014; Sheffield et al., 2018).  

− Remote sensing offers homogeneous data over large regions of the world with thin spatial 

and temporal resolutions, but with limited temporal coverage due to this technology's 

relative novelty. 

− Model output datasets offer global data for relatively long periods (>40 years), but with 

possible biases and coarse spatial and temporal resolution compared to the two other 

dataset types.  

 

The choice of a dataset then depends on the multi-hazard network to be studied. Figure 3.13 

represents the availability of the three types of data presented in this section for the five multi-

hazard networks with a chord diagram. Only in-situ observational datasets have been reviewed 

for the study of ground motion events despite progress in remotely sensed observations of hazards 

that compose this multi-hazard network (e.g., landslides, Abdulwahid and Pradhan, 2017). 

Datasets from the three types of numerical data have been reviewed for ETC (extratropical 

cyclone), CS (convective storm), CD (compound dry) and CC (compound cold) events.  

 

Besides the availability of data from a given type, other criteria can drive the selection of datasets 

to model multi-hazard networks. The spatial and temporal scales of each multi-hazard network 

guides the choice of a relevant dataset. On the one hand, compound dry (CD) events occur on 

large scales and during periods spanning from days to months (Figure 3.12). Such events require 

datasets with extensive spatial coverages but do not need thin spatial and temporal resolutions 

(Sutanto et al., 2020), suggesting that model output datasets are a good option for compound dry 

hazard events. Convective storms, on the other hand, are very local events and require datasets 

with small spatial and temporal resolutions to be appropriately characterized.  
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Figure 3.13 Availability of three types of data (in situ observations, model, remote sensing) for the five multi-

hazard networks (Ground Motion (GM), Convective Storm (CS), Extratropical Cyclone (ETC), Compound Dry 

(CD) and Compound Cold (CC)) among the 34 datasets reviewed in Appendix 3.2. 

The combination of different data types to create new datasets (Beck et al., 2017) or improve the 

accuracy of models (Hersbach et al., 2020) are initiatives that are gradually reducing the 

aforementioned data limitations. To study hazard interrelations, the combination of different data 

types is often a solution to overcome issues linked to spatial and temporal incompatibility between 

different in-situ observational datasets (Petroliagis, 2018; Couasnon et al., 2019). 

 Discussion 

Multi-hazard networks as developed in this chapter are generic multi-hazard events. In that regard, 

these represent a step forward compared to hazard interrelation matrices (Section 2.3) by 

associating more than two hazards. Multi-hazard networks could provide an initial framework to 

model interrelations between multiple hazards. Indeed, hazard interrelation matrices developed 

in Chapter 2 allow the identification of one or more quantitative methods to model the hazard 

interrelations within a multi-hazard network. However, the transition from the semi-quantitative 

approach developed in Section 3.4.2 requires overcoming several challenges mainly associated 

with (i) modelling capacities and (ii) data availability.  

 

Modelling capacities: there are two main approaches to model multi-hazard networks and their 

multiple hazard interrelations. The first approach would be to use a single modelling framework 

for the whole network of interrelations. Methods such as Bayesian networks could be used to push 
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forward the analysis carried over in Section 3.4.2 and refine the assessment of dominant hazards 

and hazard interrelations. The second approach would combine several modelling methods 

reviewed in Chapter 2 by attributing a method to each hazard interrelation. This model coupling 

approach has been undertaken to study compound flooding (Dietrich et al., 2010; Bass and 

Bedient, 2018) by combining stochastic and mechanistic models. However, these studies remain 

site-specific and require important computational power (Bass and Bedient, 2018). 

 

Data availability: the challenge of obtaining observational data for several hazards from different 

hazard categories (geophysical, meteorological) has been addressed in Section 3.4.3. 

Notwithstanding, every type of numerical data comes with its advantages and shortcomings and 

the combination of different datasets might be a necessity for some multi-hazard networks (e.g., 

convective storm). When combining different datasets, obtaining spatial and temporal consistency 

might come at the cost of a reduced resolution (Ridder et al., 2020). The choice of appropriate 

spatial and temporal resolutions depend on the multi-hazard network studied (Figure 3.12). An 

extended multi-hazard catalogue (Appendix C) could be a relevant source of data for fitting a 

Bayesian network.  

 

Besides these limitations, the concepts of dominant hazards and hazard interrelations developed 

in Section 3.4.2 creates new modelling possibilities by focusing on one hazard or one hazard 

interrelation as the “central” parts of the multivariate analysis. One approach could be to focus on 

the value of one hazard and assess how other “satellite” hazards and hazard interrelations evolve 

regarding the “central” hazard. 

 Conclusion 

This chapter focussed on the identification of natural hazard interrelations that are likely to 

develop over the EAR. The region and its climate have been presented in Section 3.2. The 

identification of relevant natural hazards for the EAR was performed for three main criteria: (i) 

frequency of occurrence, (ii) spatial relevance, (iii) potential to impact energy infrastructures. A 

total of 16 different natural hazards have been selected with this approach. These hazards were 

then grouped into multi-hazard networks. Multi-hazard networks are composed of a set of 

interrelated hazards and occur in a given space-time frame. These networks have been designed 

using knowledge relative to (a) physical processes and (b) interrelations between hazards. Five 

distinct multi-hazard networks that each include between 3 and 7 natural hazards have been 

designed and defined in Section 3.3: ground motion events, convective storms, extratropical 

cyclones, compound dry hazards, compound cold hazards.  
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To support this approach and characterize the different multi-hazard networks, a catalogue of 50 

past multi-hazard events (10 per network) has been created using evidence from 32 natural hazard 

catalogues and 26 peer-reviewed articles (Section 5.4.1). Three attributes of multi-hazard 

networks were extracted from the catalogue: spatial and temporal scales, dominant natural hazards 

and hazard interrelations. These attributes are assessed semi-quantitatively, providing a prior 

assumption on the characteristics of multi-hazard networks. These assumptions can be useful 

when framing the quantitative analysis of multi-hazard networks. An overview of freely available 

numerical datasets to study quantitatively multi-hazard network has been provided in Section 

5.4.3. A total of 34 datasets of three types (in-situ observations, model outputs, remote sensing) 

were reviewed, and their suitability for the five multi-networks was assessed.  

 

In conclusion, this chapter proposes a framework to identify, group and quantify natural hazard 

interrelations in a given region. This approach synthesizes interdisciplinary knowledge on hazard 

interrelations, bringing together atmospheric, hydrological, geophysical and biophysical hazards 

and is supported by blended information sources. Multi-hazard networks developed here go 

beyond the matrices presented in Chapter 2 in the visualization and grouping of natural hazards. 

The development of multi-hazard networks allows us to focus on a restricted number of hazard 

interrelations and links interrelations to physical processes and drivers. It also provides a clear 

view of the existing multi-hazard interrelations in the EAR. This work represents support for 

hazard interrelation modelling in Chapter 4 and 5. 
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Chapter 4: Evaluating the efficacy of bivariate 

extreme modelling approaches for multi-

hazard scenarios 

Summary:  

Modelling multiple hazards interrelations remains a challenge for practitioners. This article 

primarily focuses on the interrelations between pairs of hazards. The efficacy of six distinct 

bivariate extreme models is evaluated through their fitting capabilities to 60 synthetic datasets. 

The properties of the synthetic datasets (marginal distributions, tail dependence structure) are 

chosen to match bivariate time series of environmental variables. The six models are copulas (one 

non-parametric, one semi-parametric, four parametric). We build 60 distinct synthetic datasets 

based on different parameters of log-normal margins and two different copulas. The systematic 

framework developed contrasts the model strengths (model flexibility) and weaknesses (poorer 

fits to the data). We find that no one model fits our synthetic data for all parameters, but rather a 

range of models depending on the characteristics of the data. To highlight the benefits of the 

systematic modelling framework developed, we consider the following environmental data: (i) 

daily precipitation and maximum wind gusts for 1971 to 2018 in London, UK; (ii) daily mean 

temperature and wildfire numbers for 1980 to 2005 in Porto district, Portugal. In both cases, there 

is good agreement in the estimation of bivariate return periods between models selected from the 

systematic framework developed in this study. Within this framework, we have explored a way 

to model multi-hazard events and identify the most efficient models for a given set of synthetic 

data and hazard sets.  

 

 

 

 

 

 

*Published in Natural Hazards and Earth System Sciences in August 2020. Minor edits have 

been made to ensure consistency in reference style and language with the rest of the thesis. The 

substance of the chapter remains unchanged. 

 

Tilloy, A., Malamud, B. D., Winter, H. and Joly-Laugel, A.: Evaluating the efficacy of bivariate 

extreme modelling approaches for multi-hazard scenarios, Nat. Hazards Earth Syst. Sci., 20(8), 

2091–2117, 2020. doi: 10.5194/nhess-20-2091-2020. 
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  Introduction 

A multi-hazard approach considers more than one hazard in a given place and the interrelations 

between these hazards (Gill and Malamud, 2014). Multi-hazard events have the potential to cause 

damage to infrastructure and people that may differ greatly from the associated risks posed by a 

single hazard (Terzi et al., 2019). Here, and as discussed in Chapter 1, natural hazards (which 

we will also refer to as ‘hazards’) will be defined as (UNDRR, 20217): a natural process or 

phenomenon that may have negative impacts on society. For modelling purposes, we consider 

two main mechanisms in natural hazards interrelations (Tilloy et al., 2019): (i) cascade 

interrelations (i.e., when there are a temporal order and causality between natural hazards); (ii) 

compound interrelations (i.e., when several natural hazards are statistically dependent without 

causality). 

 

Meteorological phenomena such as extratropical cyclones or convective storms often lead to the 

combination of multiple drivers and/or hazards and can therefore be related to compound events 

as defined by Zscheischler et al. (2018). This research concentrates on cascading and compound 

interrelations between natural hazards (e.g., a storm can include rain, lightning, hail, with rain and 

hail both potentially triggering landslides). Case examples of meteorological phenomena 

influencing natural hazard interrelations include the following: 

(i)  In 2010, storm Xynthia hit the west coast of France. The storm itself was not particularly 

extreme for the season but the compound effect of extreme wind, high tides, storm surge, 

extreme rainfall and the fact that the soils were already saturated, led to massive damage 

due to wind and flooding (CCR, 2019).  

(ii) In summer 2010, Russia experienced a heatwave. Low precipitation in spring 2010 led to 

a summer drought that contributed to the heatwave having a large magnitude 

(Barriopedro et al., 2011; Hauser et al., 2015; Zscheischler et al., 2018). The co-

occurrence of extremely dry and hot conditions resulted in widespread wildfires, which 

damaged crops and caused human mortality (Barriopedro et al., 2011).  

(iii) Extreme thunderstorms occurred in the Paris region in 2001, involving lightning and 

extreme rainfall, with the rainfall triggering flooding, mudslides and ground collapse, 

with subsequent damage to railway networks (CCR, 2019). 

 

In this context, the quantification of interrelations between natural hazards can play an important 

role in risk mitigation and disaster risk reduction. Some of the natural hazards presented in the 

above examples are extreme occurrences of environmental variables (e.g. extreme temperature) 

which have different characteristics and statistical distributions (e.g., wind and landslides). 

Natural hazards can be interrelated with different mechanisms (i.e. compound, cascade). For a 

given mechanism, interrelations also vary in strength and intensity. Additionally, as highlighted 



 Evaluating the efficacy of bivariate extreme modelling approaches for multi-hazard scenarios  

Page 108 

in Tilloy et al. (2019), different modelling approaches have been developed to quantify 

interrelations between variables. Here we focus on stochastic models that include copulas 

(Nelsen, 2006; Genest and Favre, 2007; Salvadori et al., 2016), and multivariate extreme models 

(Heffernan and Tawn, 2004), limiting our analysis to the bivariate case. The potential for 

misinterpretation of the dependence structure of two variables presents a problem when end-users 

try to account for hazard interrelations. 

 

We choose six distinct bivariate models able to handle different types of tail (extreme) 

dependence: one non-parametric (JT-KDE), one semi-parametric (Cond-Ex) and four different 

parametric copulas (Galambos, Gumbel, FGM, Normal) (see Section 4.2). The fitting capacities 

of each model are compared with the estimation of level curves. Level curves are extensively 

described in Section 4.2.3. However, these curves correspond to probabilities that can be related 

to compound and cascading hazard interrelations. Compound interrelations are represented with 

a joint probability while cascading (sequential) interrelations are represented with conditional 

probabilities. 

 

Examples of joint and conditional probabilities are given in Figure 4.1. A joint probability is the 

probability of two events occurring together where both variables are extreme (also called AND 

probability) (Figure 4.1a) and a conditional probability is the probability of an event given that 

another has already occurred (Figure 4.1b). Figure 4.1 illustrates the concepts of joint probability 

and conditional probability, with daily rainfall data from a high‐resolution gridded data set of 

daily meteorological observations over Europe (termed ‘E-OBS’) (Cornes et al., 2018) and daily 

maximum wind gust data at Heathrow airport provided by the Met Office (2019). A wind gust 

here is defined as the maximum value, over the observing cycle, of the 3-second running average 

wind speed (WMO,2019). These datasets and the interrelation between extreme rainfall and 

extreme wind are discussed in Section 4.4.1. 
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Figure 4.1: Illustration of joint and conditional extremes with daily rainfall r (mm day–1) and daily maximum 

wind gust w (m s–1) data at Heathrow airport for the period 1971–2018: (a) joint extremes (AND) of rainfall and 

wind gust (blue circles); (b) conditional extremes of rainfall given that wind gust is extreme (yellow circles). 

Daily rainfall data from E-OBS (Cornes et al., 2018) and daily maximum wind gust (3 s period) data from the 

Met Office (2019). 

Joint and conditional probabilities are relevant metrics for practitioners and have been studied and 

used in several studies in the environmental sciences (e.g., Hao et al., 2017; Zscheischler and 

Seneviratne, 2017). However, as the most widely used level curve is the joint probability curve, 

we initially focus on it. To analyse our results and compare the performances of the models, we 

designed diagnostic tools that are presented in Section 4.3.2.  

 

This chapter is organized as follows. We first (Section 4.2) provide a theoretical background on 

fundamental concepts used in this study and present the models and methodology used. We then 

(Section 4.3) discuss the characteristics of our synthetic dataset and present the results of the 

simulation study. The diagnostic tools used to compare models are also discussed (i.e., level 

curves and dependence measure). As a result, a heatmap exhibiting the strength and weaknesses 

of our six models is presented. It aims to provide objective criteria to justify the use of one model 
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rather than another for a given set of hazards Two applications to pairs of natural hazards that can 

impact energy infrastructure are presented in Section 4.4. 

 

The main purpose of these data applications is to illustrate our methodology, but the natural 

hazard interrelations studied have the potential to negatively impact energy infrastructure. The 

first application looks at compound daily extreme rainfall and wind in the United Kingdom. The 

combination of these two hazards can result in different and greater impacts than the addition of 

impacts due to extreme wind and extreme rainfall (e.g., strong wind destroying roof of a building 

can lead to greater damages from heavy rain) (Martius et al., 2016). The second application 

studies extreme hot temperatures and wildfires in Portugal. Extreme temperatures can lead to 

damage on infrastructure (e.g., rail track deformation) and put pressure on the energy 

infrastructure by increasing the demand (Hatvani-Kovacs et al., 2016; Vogel et al., 2020), it also 

increases the probability of wildfires (Witte et al., 2011; Perkins, 2015) which have the potential 

to cause fatalities and destroy infrastructures (Tedim et al., 2018). We finish (Section 4.5) with 

discussion and conclusions. 

  Methods 

We are interested in modelling interrelations between hazards (represented by environmental 

variables) in the extreme domain. This implies the use of methods and concepts coming from the 

broad area of Extreme Value Theory (EVT). Amongst the six models compared in this study, four 

are directly linked to EVT (JT-KDE, Cond-Ex, Galambos, Gumbel). Extreme Value Theory has 

its roots in univariate studies (Coles, 2001) and has been extended to the multivariate framework 

(Pickands, 1981; Davison and Huser, 2015). A theoretical background on extreme value theory 

is given in Appendix F1. In this study, we focus on modelling the dependence between two 

variables. Bivariate extreme value models developed within the statistical community (Resnick, 

1987; Heffernan and Tawn, 2004; Cooley et al., 2019) have been used for environmental 

application and therefore natural hazard interrelations (De Haan and De Ronde, 1998; Zheng et 

al., 2014; Sadegh et al., 2017). To reproduce the complexity and variety of natural hazard 

interrelations we use 60 synthetic datasets to compare the fitting performances of the models. In 

these synthetics datasets, we vary two main attributes of the bivariate datasets: the dependence 

structure and the marginal (individual) distributions. Of these 60 different synthetic datasets, 36 

datasets have asymptotically dependent variables and 24 have asymptotically independent 

variables (see Section 4.2.1 for a definition of these two concepts). 

 

In this section, we first present the two types of asymptotic behaviour in bivariate extreme value 

statistics: asymptotic dependence and asymptotic independence and discuss different dependence 

measures for the estimation of the relationship between two variables (Section 4.2.1). The six 
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bivariate models are then described (Section 4.2.2). Finally, we discuss the concept of the return 

level in the bivariate framework (Section 4.2.3). 

 Bivariate extreme dependence 

4.2.1.1  Asymptotic dependence and asymptotic independence 

Let X1, …, Xn be n different variables, with each variable a vector that can take on multiple values. 

Assume that these vectors are random and independent and identically distributed (i.i.d). The 

asymptotic dependence implies that if one variable Xk for k ϵ (1, n) has values Xk that are large, 

the other variable can take on values that are simultaneously extreme (Coles et al., 1999). One 

way to characterize extremal dependence structures is to split them into those with asymptotic 

dependence and those with asymptotic independence. In the bivariate case, for (X1, X2) random 

pair with joint distribution G, the random variables X1 and X2 with common marginal distributions 

are asymptotically dependent if the following conditional probability (Heffernan, 2000) 

𝑃 (𝑋1 > 𝑥 | 𝑋2 > 𝑥)  → 𝑐 > 0 𝑎𝑠 𝑥 → 𝑥∗ (4.1) 

Where X1 > x are those values of variable X1 that are greater than a threshold x, the probability of 

both X1 > x and X2 > x is c ∈ (0,1] and x* is the upper-end point (maximum) of the common 

marginal distribution. 

The variables X1 and X2 are asymptotically independent if (Heffernan, 2000)  

𝑃 (𝑋1 > 𝑥 | 𝑋2 > 𝑥)  → 0 𝑎𝑠 𝑥 → 𝑥∗ (4.2) 

where x is a high threshold. In practice (Davison and Huser, 2015), extremal dependence is often 

observed to weaken at high levels (i.e., as x → ∞). Dependence between variables can be observed 

in the body of the joint distribution despite the multivariate distribution being in the max-domain 

of attraction of independence (Davison and Huser, 2015).  

Using models that take the assumption of asymptotic dependence (independence) in the case of 

asymptotically independent (dependent) variables can lead to a large overestimation 

(underestimation) of the probability of joint extreme events (Ledford, 1996; Mazas and Hamm, 

2017; Cooley et al., 2019). Multivariate extreme value and regular variation theory presented in 

Appendix F1 provides a rich theory for asymptotic dependence (De Haan and Resnick, 1977; 

Pickands, 1981) but are not able to distinguish between asymptotic independence and full 

independence. 

4.2.1.2 Tail dependence measures 

A popular method to analyse hazard interrelationships is to compute dependence measures (Zheng 

et al., 2013; Petroliagkis, 2018). Dependence measures aim to describe how two (or more) 

variables are correlated.  
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When focusing on the dependence in the tails or extreme part of distributions, linear or rank 

dependence measures might not be accurate and other coefficients appear more relevant (Hao and 

Singh, 2016). Dependence between variables in the joint tail domain has been widely studied in 

the statistics community (Coles and Tawn, 1991; Ledford and Tawn, 1997; Coles et al., 1999; 

Heffernan and Tawn, 2004; Zheng et al., 2014). As explained in Section 2.1.1, in the tails, two 

variables can be either asymptotically independent or asymptotically dependent; different 

diagnostics and coefficients previously developed are summarized in Heffernan (2000).  

 

In this study, we use the following tail dependence measures:  

− the extremal dependence measures χ and 𝜒 ̅ introduced by Coles et al. (1999);  

− the coefficient of tail dependence η, introduced by Ledford and Tawn (1996).  

These coefficients aim to measure the extremal dependence for bivariate random variables (X1, 

X2) and assume initially that (X1, X2) have a common marginal distribution. Coles et al. (1999) 

defined the extremal dependence measure: 

(𝑥) = 𝑃(𝑋1 > 𝑥 |  𝑋2 > 𝑥) with lim
𝑥→𝑥∗

(𝑥) =   
(4.3) 

with x* is the upper-end point (maximum) of the common marginal distribution and x a 

sufficiently high threshold. A sufficiently high threshold x is a value that can be considered as 

extreme within a given distribution (corresponding to a high quantile); the value of the threshold 

depends on the marginal distribution. The extremal dependence measure (x) is the probability 

of one variable (X1 or X2) being extreme given the other is extreme (X2 or X1). This measure  

varies in the range [0,1], where a value of χ = 0 means that the two variables are asymptotically 

independent and χ = 1 means that they are perfectly dependent. The extremal dependence measure 

 is only suitable for asymptotic dependence. In the case of asymptotic independence (χ = 0), 

Coles et al. (1999) introduced the measure 𝜒 ̅ which falls between the range [-1,1], 1 being 

asymptotic independence. Ledford and Tawn (1996) defined their coefficient of tail dependence 

to be able to assess the strength of dependence between two asymptotically independent variables. 

They show that the joint survivor function for random variables (Z1, Z2) with common standard 

Fréchet margins can be expressed as (See Appendix F): 

𝑃(𝑍1 > 𝑧, 𝑍2 > 𝑧) ~ ℒ(𝑧)(𝑃(𝑍1 > 𝑧))
1

𝜂⁄  (4.4) 

with z a sufficiently high threshold in the standard Fréchet space. ℒ(𝑧) a slowly varying function 

while z→∞ and η is the coefficient of tail dependence, lying in the range [0,1]. Different values 

of each coefficient and their implications are summarized in Figure 4.2. For large z, the three tail 

dependence measures presented above are related in the following way (Ledford and Tawn, 

2003): 
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𝜒 ̅ = 2𝜂 − 1

𝜒 = {
0 𝑖𝑓  𝜒 ̅ = 1 and ℒ(𝑧) → 𝑐 > 0 𝑎𝑠 𝑧 → 𝑧∗ 

1 𝑖𝑓 𝜒 ̅ < 1

 

(4.5) 

 

Figure 4.2: The three coefficients used in this study to assess the dependence between two variables at an extreme 

level. In the upper part of the plot (blue), the coefficient 𝝌 varies between perfect asymptotic dependence (light 

blue, 𝝌 = 0) and asymptotic independence (dark blue, 𝝌 = 1). In the lower part of the plot (orange), which is in 

the asymptotic independence domain (in other words, 𝝌 = 0) the coefficients 𝝌 ̅𝐚𝐧𝐝 𝜼 both vary between negative 

association (light orange, 𝝌 ̅ = −𝟏;   𝜼 = 0) and positive association (dark orange, 𝝌 ̅ = 𝜼 = 1). 

 Bivariate models 

Dependence measures are empirical measures which estimate the strength of the correlation, or 

dependence between two (or more) variables. Even though these measures provide crucial 

information, these do not allow to model joint (or conditional) exceedance probabilities. To model 

joint exceedance probabilities which represent the joint occurrence of hazards (here represented 

by extremes of environmental variables) in time and space, the use of stochastic models is 

required. In this section, we present the three stochastic approaches for multivariate modelling 

that are used in the simulation study: parametric copulas, the semi-parametric conditional 

extremes model and a non-parametric approach based on multivariate extreme value theory (see 

Appendix F1) and kernel density estimation. 

4.2.2.1 Copulas 

In the bivariate case, a copula is a joint distribution function which defines the dependence 

between two variables independently from the marginal distributions of these variables 

(Heffernan, 2000; Nelsen, 2006; Genest and Favre, 2007; Hao and Singh, 2016). Let the random 

variables (X1, X2) be vectors of i.i.d. values with marginal distributions F1(x1) and F2(x2) and a 

joint cumulative distribution function F1,2(x1,x2). Any bivariate distribution function with 

marginal distribution functions FX1(x1) and FX2(x2) can be expressed as a copula function as 

follows (Sklar, 1959; Nelsen, 2006): 
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𝐹1(𝑥1, 𝑥2) =  𝐶{𝐹1(𝑥1), 𝐹2(𝑥2)}, (4.6) 

where C is the copula function. Copulas are not limited to two variables and Eq. 6 can be extended 

to higher dimensions. Several classes of copula with different properties are available, including 

Archimedean copulas, elliptical and extreme value copulas (e.g., Joe, 1997; Nelsen, 2006). 

Extreme value copulas have been used within various domains such as finance, insurance and 

hydrology because of their ability to model extremal dependence structures (Genest and 

Nešlehová, 2013).  

 

However, extreme value copulas are by definition asymptotically dependent as they follow the 

rules of multivariate extreme value theory (see Appendix F1). The two types of extremal 

dependence were presented in Section 4.2.1 and show that it is important to also consider 

asymptotic independence. Many copulas are asymptotically independent, including the normal 

copula and the Farlie-Gumbel-Morgenstern (FGM) copula (Heffernan, 2000). These two copulae 

will be used in the simulation analysis as asymptotically independent models (Section 4.3). 

 

In the present study, the application of a copula model can be summarized in four main steps: 

(i) Fitting marginal distributions to the two variables; empirical distribution below a 

threshold and General Pareto Distribution (GPD) above this threshold. 

(ii) Transforming the variables to uniform margins. The transformed datasets no longer have 

information on the marginal distributions but keep the information about the dependence 

structure (Nelsen, 2006). 

(iii) Fitting the copula function to the pseudo-observations by estimating the copula 

parameter(s) with an estimator (Genest and Favre, 2007). 

(iv) Estimating the probability of joint events with the copula function previously fitted. 

4.2.2.2 Conditional extreme model 

The conditional extremes model (Heffernan and Tawn, 2004; Keef et al., 2013) is a semi-

parametric model designed to overcome several limitations of copulas and other approaches such 

as the joint tail methods in which all variables must become large at the same rate. The 

aforementioned methods can typically handle only one form of extremal dependence, either 

asymptotic dependence or asymptotic independence. The conditional extremes model can be 

more flexible with asymptotic dependence classes; it can account for asymptotic independence 

and asymptotic dependence (Heffernan and Tawn, 2004; Keef et al., 2013). It can also be used to 

analyse more than two i.i.d variables more easily than copula-based methods (Winter and Tawn, 

2016); we restrict the theory provided here to the bivariate case.  The conditional model has been 

used for different purposes: spatial or temporal dependence between extremes (Winter and Tawn, 

2016; Winter et al., 2016), dependence between extreme hazards (Zheng et al., 2014) and even 

financial purposes (Hilal et al., 2011). 
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The conditional extremes model assesses the dependence structure between several variables 

conditioning on one being extreme and aims to model the conditional distribution. As in joint-tail 

models, the first step is to transform the marginal distributions; here the preferred marginal choice 

is the following: Laplace (or Gumbel) margins (Heffernan and Tawn, 2004; Keef et al., 2013). 

Let the random variables (Y1,Y2) be vectors of i.i.d. values with Laplace distributions. The 

conditional extremes model aims to identify two normalizing functions a(yi) and b(yi) such that a 

satisfies ℝ+  → ℝ and b satisfies ℝ+  → ℝ+, Both are defined such that for y > 0 (Winter, 2016): 

𝑃 (
𝑌2 − 𝑎[𝑌1]

𝑏[𝑌1]
≤ 𝑧, 𝑌1 − 𝑢 > 𝑦|𝑌1 > 𝑢) ⟶ 𝑒𝑥𝑝(−𝑦) 𝐺(𝑧)          

(4.7) 

as u → ∞, where G(z) is a non-degenerate distribution function. In the case of Laplace margins 

the normalising functions a and b are given by (Winter, 2016): 

𝑎[𝑦] = 𝛼𝑦   𝑎𝑛𝑑    𝑏[𝑦] = 𝑦𝛽  (4.8) 

where α ∈ [−1, 1] and β ∈ (−∞, 1). The different values of α and β characterize different forms of 

tail dependence. In the case where α = 1 and β = 0, variables (Y1, Y2) exhibit asymptotic positive 

dependence and the case of asymptotic negative dependence is given when α = −1 and β = 0 

(Winter, 2016). Eq.4.7 and Eq.4.8 aim to present the defining properties and mechanisms of the 

conditional extremes model , not an explicit expression of a distribution. For more information 

about the model, the reader can refer to Heffernan and Tawn (2004).  

 

Formally, the application of the conditional extreme model can be summarized in four main steps: 

(i) Fitting marginal distributions to the two variables; an empirical cumulative distribution 

function below a threshold and generalised Pareto distribution (GPD) above this 

threshold. 

(ii) Transforming those distributions onto Laplace (or Gumbel) margins. 

(iii) Estimating the dependence parameters using non-linear regression. 

(iv) Estimating the probability of joint events  by simulating new extreme data through the 

conditional model 

4.2.2.3 Joint tail KDE (kernel density estimation) approach 

The non-parametric approach used in this chapter is an adaptation of the non-parametric approach 

presented by Cooley et al. (2019). Moreover, the dependence measures η is estimated to determine 

whether data are asymptotically dependent or asymptotically independent. This approach is based 

on the 2D kernel density estimator and the multivariate extreme value framework (see Appendix 

F1). 
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The kernel density estimation (KDE) method has the advantage of being a non-parametric way to 

estimate the joint distribution of n variables. With KDE, we do not assume the underlying 

distribution of the margins or the dependence structure. The KDE centres a smooth kernel at each 

observation. The choice of the bandwidth is crucial when using this method (Duong, 2007; Hao 

and Singh, 2016). This selection was done automatically in our case within the kernel survival 

function estimation function from the R package ks (Duong, 2007, 2016).  

 

The kernel density estimator is used here to estimate an empirical density distribution 𝑓(𝑋) and 

a joint survival distribution 𝐹̂(𝑋) of the bivariate dataset where X=(X1, X2). The joint survival 

distribution corresponds to the joint exceedance probability of the two variables (See Section 

4.2.3). From the joint survival distribution, it is possible to estimate level curves which are isolines 

corresponding to given joint probabilities of exceedance (see Section 4.2.3).  

 

After estimating the joint survival distribution of the two variables with a kernel density estimator, 

the cumulative distributions 𝐹 ̂ 𝑖(𝑥) of the two random variables Xi  (i = 1, 2,…) are estimated 

empirically below a threshold and from a Generalized Pareto distribution above the threshold. 

The two marginal cumulative distribution functions are then transformed to Fréchet margins to 

allow the use of multivariate extreme value theory(Cooley et al., 2019): 

𝑇 ̂𝑖
(𝑥) =

−1

𝑙𝑛(𝐹̂𝑖(𝑥))
. 

(4.9) 

Therefore, 𝑍 = 𝑇 (𝑋) = (𝑇1(𝑋1), 𝑇2(𝑋2))  can be assumed to be regularly varying with an index 

of regular variation 1 (see Appendix F1). An extrapolation from a base probability pbase (blue 

area in Figure 4.3) estimated with a kernel density to an objective probability pobj (purple area in 

Fig. 4.3) is then done on the transformed space. Thus, on the transformed scale, it is possible to 

construct 𝑙Z(obj)= 𝑡𝑙Z(base) (Cooley et al., 2019). To produce level curves on the original scale, 

the transformation in Eq. 4.9 is reversed: 𝑙obj = 𝑇−1𝑙Z(obj) . Figure 4.3 gives a graphical 

representation of the extrapolation done within the joint tail KDE approach.  
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Figure 4.3: Extrapolation in a regularly varying tail for a distribution in the max-domain of attraction of some 

multivariate extreme value distribution. Black circles represent an asymptotically dependent bivariate dataset. To 

estimate the extreme joint probability P(tA) (where tA is an extreme set represented by the purple area), one can compute 

P(A) = P{Z ∈ A}, (where A is a less extreme set than tA represented by the light blue area) with t < 1. More data points 

are available in A than tA, Then, from the regular variation framework t P(tA) ≈ tP(A). Adapted from Huser (2013) 

The methodology presented above is only valid when the two variables X1, X2 are asymptotically 

dependent. In the asymptotic independence case, one needs to adjust the methodology. Two 

asymptotically independent variables follow the properties of hidden regular variation (Resnick, 

2002; Maulik and Resnick, 2005) (see Appendix F1.2.3). Formally, the coefficient of tail 

dependence η is introduced such as (Cooley et al., 2019): 

𝑙𝑍(𝑜𝑏𝑗) =  𝑡
1
𝜂𝑙𝑍(𝑏𝑎𝑠𝑒) 

(4.10) 

The specificity of this approach (presented below) is that it combines a non-parametric estimation 

of the joint density and the framework of multivariate extreme value presented in Appendix F1.2. 

It can deal with both asymptotic dependence and independence. The coefficient of tail dependence 

estimation has an influence on the extrapolation process in the asymptotic independence case. 

Here we used the estimator presented in Winter (2016) which is derived from the joint-tail model 

of Ledford and Tawn (1997). 

 

Formally, the application of the joint tail KDE model can be summarized in five main steps: 

(i) Estimating the joint cumulative distribution of the variables with a kernel density 

estimator. 
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(ii) Fitting marginal distributions to the two variables; empirical distribution below a 

threshold and General Pareto Distribution (GPD) above this threshold. 

(iii) Transforming those distributions into Fréchet margins. 

(iv) Determining whether variables are asymptotically dependent or asymptotically 

independent by estimating the coefficients of tail dependence χ and η. 

(v) Estimating the probability of joint events and extrapolate the base isoline to an objective 

isoline. 

4.2.2.4  Return levels in the bivariate framework 

Studying natural hazards as multivariate — and particularly bivariate — events is a growing 

practice in multiple disciplines, including the following: coastal engineering (Hawkes et al., 2002; 

Mazas and Hamm, 2017); climatology Hao et al., 2017, 2018; Zscheischler and Seneviratne, 

2017); and hydrology (Zheng et al., 2014; Hao and Singh, 2016). There has been debate among 

scientists trying to define a “multivariate return period” (Serinaldi, 2015; Gouldby et al., 2017). 

Serinaldi (2015) defined seven different types of probabilities that can be considered as bivariate 

probabilities of exceedance. These can be expressed through copula notation.  

 

Let the random variables (X1, X2) be vectors of i.i.d. values with marginal distributions Fi(xi) with 

i=1,2, 𝐶 their copula function (Section 4.2.3.1) and 𝐹1,2 (𝑥1, 𝑥2) =  𝐶{𝐹1(𝑥1), 𝐹2(𝑥2)} =

𝐶(𝑢, 𝑣) where  𝐹1,2 is the bivariate distribution function of X1 and X2,  𝑈 = 𝐹1(𝑋1)  and 

 𝑉 = 𝐹2(𝑋2) are standard uniform random variables. The seven types of probability and their 

equations are given in Table 4.1. 

Table 4.1: Types of probabilities for bivariate (X,Y) return period estimation. u and v are extreme thresholds. 

From (Serinaldi, 2015). 

Type of 

probability 

Equation Eq. # 

𝑷𝑨𝑵𝑫 𝑃(𝑈 > 𝑢 ∩ 𝑉 > 𝑣) =  1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣) (4.11) 

𝑷𝑶𝑹 
𝑃(𝑈 > 𝑢 ∪  𝑉 > 𝑣) =  1 − 𝐶(𝑢, 𝑣) 

(4.12) 

𝑷𝑪𝑶𝑵𝑫𝟏 
𝑃(𝑈 > 𝑢 | 𝑉 > 𝑣) = ( 1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣))/(1 − 𝑢) 

(4.13) 

𝑷𝑪𝑶𝑵𝑫𝟐 
𝑃(𝑈 > 𝑢 | 𝑉 ≤ 𝑣) =  1 −

𝐶(𝑢, 𝑣)

𝑢
 

(4.14) 

𝑷𝑪𝑶𝑵𝑫𝟑 
𝑃(𝑈 > 𝑢 | 𝑉 = 𝑣) =  1 −

𝜕𝐶(𝑢, 𝑣)

𝜕𝑢
 

(4.15) 

𝑷𝑲 
𝑃(𝐶(𝑢, 𝑣) > 𝑡) =  1 − 𝐾𝐶(𝑡) 

(4.16) 

𝑷𝑺 
𝑃(𝑔(𝑈, 𝑉)) =  1 − 𝐹𝑍(𝑧) 

(4.17) 
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The function Kc in Eq. 4.16 is the Kendall function and represents the distribution function of the 

copula (Salvadori and De Michele, 2010; Serinaldi, 2015). Equation 4.17 refers to the “structure-

based” return period introduced by Volpi and Fiori (2014). Among these seven types of 

probabilities, we selected the “AND” and the “COND1” probabilities (see Figure 4.4) as these 

are commonly used in the literature (Chebana and Ouarda, 2011; Tencer et al., 2014; Sadegh et 

al., 2018) and correspond to the two types of interrelations we are interested in (i.e., compound 

and cascade). 

 

Figure 4.4: Graphical representation of two bivariate (X1, X2) probabilities of exceedance: (a) PAND probability 

and (b) PCOND probability with level curves (blue in ‘a’ and orange in ‘b’) representing p = 0.01 (1000 data points 

on a Gumbel copula with log-normal marginal distributions). Colours represent the domain on which the 

probabilities are computed while the areas with diagonal hatching represent the critical regions which are the 

regions corresponding to the given probabilities.  

In the 2D space, probabilities of exceedance (or quantiles) are not represented by a single value 

but by a curve with an infinite number of points with the same probability of exceedance. 
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However, as shown in Figure 4.4, these probabilities are defined by: (i) the domain where these 

are computed and (ii) the critical region corresponding to the probability type. For the AND 

probability, the computation domain remains similar when moving along the curve while the 

critical region evolves constantly. For the COND1 probability, both the computation domain and 

critical region evolve when moving along the curve (see Figure 4.4). Bivariate probabilities of 

exceedance are curves. These curves have been given various names in different research papers 

including the following:  

− isolines (Salvadori, 2004; De Michele et al., 2007; Salvadori et al., 2016; Sadegh et al., 

2017, 2018)  

− level curves (Coles, 2001; Salvadori, 2004; De Michele et al., 2007; Volpi and Fiori, 

2012; Serinaldi, 2015, 2016; Bevacqua et al., 2017).  

For the specific case of the AND probability, the following names have been used: 

− joint exceedance curves (Hawkes et al., 2002; Hawkes, 2008; Mazas and Hamm, 2017). 

− quantile curves (De Haan and De Ronde, 1998; Chebana and Ouarda, 2011).  

 Simulation study 

Here we are interested in comparing the abilities of six different models presented in Section 

4.2.3 to reproduce a given dependence structure. We create 60 different synthetic dataset types 

with varying marginal distributions and dependence structures. By doing this, we aim to produce 

bivariate synthetic datasets comparable to the ones studied in bivariate hazard analysis (Zheng et 

al., 2014; Hendry et al., 2019). This will allow us to confront the six models against the synthetic 

datasets, as a reference for bivariate hazard interrelation analysis (See Section 4.4). The six 

models compared in this simulation study are:  

(i) the conditional extremes model (Cond-Ex) (Section 4.2.3.2);  

(ii) the non-parametric joint-tail model (JT-KDE) (Section 4.2.3.3);  

(iii) the Gumbel copula (Gumcop) (Section 4.2.3.1);  

(iv) the normal copula (Normalcop) (Section 4.2.3.1);  

(v) the Farlie-Gumbel-Morgenstern (FGMcop) copula (Section 4.2.3.1);  

(vi) the Galambos copula (Galamboscop) (Section 4.2.3.1).  

 

Among the four copulas used here, two are asymptotically dependent (Gumbel and Galambos) 

and two are asymptotically independent (normal and FGM). A description of the six models is 

given in Table 4.2. Table 4.2 synthesizes a range of information about all the six models used in 

this simulation study including their type (nonparametric, semiparametric, parametric), equation, 

parameter range (if there is a parameter) and asymptotic modelling domain. This latter 

information is important to interpret the result of the simulation study in Section 4.3.3. 
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Table 4.2: Description of the six statistical models compared in this article. The description includes the model 

name and acronym (used throughout the article), type of model (parametric, semi-parametric, non-parametric), 

the mathematical description, the parameter range (where relevant) and the asymptotic modelling domain (AI 

for asymptotic independence and AD for asymptotic dependence) 
Model name 

(Model 

acronym) 

Model type Mathematical description Parameter 

range 

Asymptotic 

modelling 

domain 

Joint tail KDE 

(JT-KDE) 
Non-

Parametric 

 

  AD 

Semi-

parametric 

   ∈ [0,1] AI 

Conditional 
Extremes Model  

(Cond-Ex) 

Semi-

Parametric 

 

 

for y> 0, as u → ∞ where G(z) is a non-degenerate distribution 

function. 

  AI and 

AD 

Gumbel copula 

(Gumcop) 

Parametric 
  

AD 

Normal copula 
(Normalcop) 

Parametric  

 

 

With Φ(.) the standard Gaussian distribution function  

 

AI 

FGM copula 

(FGMcop) 

Parametric 
  

AI 

Galambos 
copula 

(Galamboscop) 

Parametric 
  

AD 

In this section, we first describe and display the synthetic data that have been generated to conduct 

this study. We shall then present the measures used in this study to compare the level curves and 

the dependence measures estimated from the six models presented in Table 4.2. Finally, the 

results of the simulation will be displayed and analysed. 

  Synthetic data 

Synthetic datasets are often used to compare different statistical models (Chebana and Ouarda, 

2011; Zheng et al., 2014; Cooley et al., 2019). Here we generated 60 bivariate synthetic datasets 

representative of environmental data such as daily rainfall, daily wind gust and daily wildfire 

occurrences (see Section 4.4). The number of synthetic data points we use here have been fixed 

to 5000 for each dataset. For the asymptotic dependence case, 36 distinct datasets are generated 

from a Gumbel copula (see Appendix F1.3.1); for the asymptotic independence case, 24 datasets 

are generated from a normal copula (see Appendix F1.3.2). Each synthetic dataset set of 

parameters has been used to generate 100 realizations to produce confidence intervals. 

 

The synthetic datasets are generated from two marginal distributions and a dependence model 

(i.e., copula). Both marginal distributions are log-normal; the log-normal distribution has been 

used (among others) for the modelling of a wide range of natural hazards, including wind, flood 

and rainfall (Malamud and Turcotte, 2006; Clare et al., 2016; Loukatou et al., 2018; Nguyen Sinh 

et al., 2019).  

𝐶(𝑢, 𝑣) = exp {−[(− ln(𝑢))𝜃 + (− ln(𝑣))𝜃]
1/𝜃

} 

𝐶(𝑢, 𝑣) = 𝑢𝑣exp {−[(− ln(𝑢))−𝜃 + −(ln(𝑣))−𝜃]
−1/𝜃

} 

𝐶(𝑢, 𝑣) = 𝑢𝑣[1 + 𝜃(1 − 𝑢)(1 − 𝑣)] 

𝐶(𝑢, 𝑣) = ∫ ∫
1

2𝜋√1 − 𝜃2
exp (

2𝜃𝑥𝑦 − 𝑥2 − 𝑦2

2(1 − 𝜃2)
) 𝑑𝑥𝑑𝑦

𝛷−1(𝑣)

−∞

𝛷−1(𝑢)

−∞

 

𝑃 (
𝑌2 − 𝑎[𝑌1]

𝑏[𝑌1]
≤ 𝑧 ,  𝑌1 − 𝑢 > 𝑦| 𝑌1 > 𝑢) ⟶ exp(−𝑦) 𝐺(𝑧) 

𝜃 ∈ [1, ∞) 

𝜃 ∈ [0, ∞) 

𝜃 ∈ [−1,1] 

𝜃 ∈ [−1,1] 

𝑃(𝑍 ∈ 𝑠𝐴∗) ≈  𝑠−1𝑃(𝑍 ∈ 𝐴∗) 

𝑃(𝑍 ∈ 𝑠𝐴∗) ≈  𝑠−1/𝜂𝑃(𝑍 ∈ 𝐴∗) 
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Random variables X with a log-normal distribution are governed by two parameters: the location 

parameter μ and the shape parameter σ which correspond respectively to the mean and the 

standard deviation of Y, the variable’s natural logarithm, i.e., Y = ln(X) (Aitchison, 1957). The 

parameter σ influences the shape of the distribution and the heaviness of the tail; the dispersion 

of a log-normal distribution mostly depends on the shape parameter (Koopmans et al., 1964)  

 

We can characterize log-normal distributions with the coefficient of variation cv which is the ratio 

of the standard deviation s of the log-normally distributed variable x to its nonzero mean 𝑥 ̅ 

(Malamud and Turcotte, 1999): 

𝑐𝑣  =  
𝑠

𝑥̅
 (4.18) 

The standard deviation s and the nonzero mean 𝑥 ̅ are both related to the two parameters μ and σ 

of the log-normal distribution (see Table 4.3). The use of the coefficient of variation characterizes 

the log-normal distribution with one single parameter instead of two. The distribution used in the 

simulation study, the parameters and the relationship between these parameters and the different 

tail dependence measures are summarised in Table 4.3. 

 

Table 4.3: Marginal distributions and copula used for the synthetic datasets 

Distribution Cumulative density function  Parameters 

Parameters 

values 

Log-normal 

distribution 

 

 μ, σ of y, where y = ln(x) 

𝑥̅ = 𝑒𝑥𝑝(𝜇 + 𝜎2/2) 

𝑠 = 

√(𝑒𝑥𝑝(𝜎2 − 1)𝑒𝑥𝑝(2𝜇 + 𝜎2)
 
 

 𝑐𝑣  =  𝑠/𝑥̅ 

A: cv =0.25 

B: cv =0.53 

C:  cv =2.91 

Gumbel 

copula 

 

 

𝜃 = 𝑙𝑜𝑔2(2 − 𝜒)  

χ = 0.05, 

0.10, 0.30, 

0.50, 0.70, 

0.90 

Normal 

copula 

 

 

𝜃 = 2𝜂 − 1  

η = 0.25, 

0.50, 0.75, 

0.90 

where Φ  is the cumulative distribution function of the standard normal distribution 

 

We use three different coefficients of variation: cv = 0.25 (labelled as A for the rest of this chapter), 

0.53 (labelled B) and 2.91 (labelled C) (See Table 4.3). The log-normal distribution A (cv = 0.25) 

produces a distribution close to the normal distribution. The distribution C (cv = 2.91) is a highly 

right-skewed distribution. The distribution B (cv = 0.53) is intermediate skewness between A and 

B. In the bivariate context, there are six possible combinations of these distributions: AA, AB, 

AC, BB, BC, and CC.  

 

The dependence structure is represented by a Gumbel copula in the case of asymptotic 

dependence (AD) and a normal copula in the case of asymptotic independence (AI) as no copula 

𝐹(𝑥) =  𝛷 (
(ln(𝑥) − 𝜇

𝜎
 ) 

𝐶(𝑢, 𝑣) = 

∫ ∫
1

2𝜋√1 − 𝜃2
exp (

2𝜃𝑥𝑦 − 𝑥2 − 𝑦2

2(1 − 𝜃2)
) 𝑑𝑥𝑑𝑦

𝛷−1(𝑣)

−∞

𝛷−1(𝑢)

−∞

 

 

𝐶(𝑢, 𝑣) = 𝑒𝑥𝑝 {−[(− ln(𝑢))𝜃 + (− ln(𝑣))𝜃]
1/𝜃

} 
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can be both asymptotically independent and asymptotically dependent (Heffernan, 2000; Coles, 

2001). The Gumbel copula is an extreme value copula, asymptotically dependent, with one 

parameter 𝜃 which can be related to the extremal dependence measure χ. Here, we vary χ between 

0.05 (very weak asymptotic dependence) and 0.9 (strong asymptotic dependence) (see Figure 

4.5). The Normal (or Gaussian) copula is asymptotically independent. Its unique parameter is 

related to the coefficient of tail dependence η (Heffernan, 2000). We vary η from η = 0.25 

(negative sub-asymptotic dependence) to η = 0.9 (positive sub-asymptotic dependence) (see 

Figure 4.5). In total, ten different dependence structures were simulated for each of the six 

combinations of marginal distributions. The 60 bivariate synthetic datasets used in this study are 

displayed in Figure 4.5.  
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Figure 4.5: The 60 different synthetic bivariate datasets used in our simulation study. On the y-axis: the 

dependence strength (a) χ (for asymptotic dependence) and (b) η (for asymptotic independence), vary from 

slightly negative association to heavily dependent (see also Fig. 4.2). On the x-axis AA to CC represent the 

marginal distributions that are part of the bivariate distributions (see Table 4.3) with A, B, C representing log-

normal distributions with different coefficient of variations cv (A: cv = 0.25; B: cv = 0.47; C: cv = 0.95). 

To compare the fitting capabilities of the different models presented in Section 4.2.3, we vary 

several characteristics of the synthetic dataset: 

(i) The shape of the marginal distributions. Natural hazards can exhibit very diverse 

statistical properties depending not only on their type but also on the location where they 

occur (Sachs et al., 2012).  

(ii) The strength of the dependence represented by the parameter of the copula function. The 

type and strength of the relationship between natural hazards can vary within a broad 

range depending on the natural hazard studied or the location (Gill and Malamud, 2014; 
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Martius et al., 2016). To consider both the AD and AI cases, the two parameters χ and  

(Section 2.2) are used. 

 Diagnostic tools 

There are many diagnostic tools to assess the goodness-of-fit of parametric bivariate models 

(Arnold and Emerson, 2011; Couasnon et al., 2018; Genest et al., 2009, 2011; Genest and 

Nešlehová, 2013; Sadegh et al., 2017). Amongst these, some of the most popular are the 

following:  

− Cramer–von Mises statistic (Arnold, Taylor and Emerson, John, 2011) 

− Kolmogorov-Smirnov test (Arnold, Taylor and Emerson, John, 2011) 

− Akaike information criterion (AIC) (Akaike, 1974) 

− Bayesian information criterion (BIC) (Schwarz, 1978) 

 

These measures have been developed in a univariate framework and then extended to the bivariate 

framework. Genest (2009) proposed several approaches for Cramer–von Mises and Kolmogorov–

Smirnov goodness-of-fit tests for copulas. There are two issues we faced using these measures 

for our study:  

(i) These criteria are designed to measure the fit on the dependence structure of the whole 

dataset and not on the extreme dependence’.  

(ii) In our study, we aim to compare parametric and non-parametric models.  

 

To address the first issue, goodness-of-fit tests have been developed for extreme value copulas 

(Genest et al., 2011). The latter issue is more complicated; each modelling approach has its own 

fitting methodologies, and although it is now possible to compare copulas against each other 

(Sadegh et al., 2017; Couasnon et al., 2018), it is more difficult to compare copulas against semi-

parametric or non-parametric models. The measures mentioned above are not suitable for the 

present study as they require models to be parametric to be compared against observations 

(Stephens, 1970; Arnold, Taylor and Emerson, John, 2011). It is then not possible to compare the 

goodness-of-fit of the six models used in this study altogether.  

 

However, we are interested in fitting capabilities in the extremes. The models will then be 

compared on the estimation of two attributes of the synthetic data detailed below:  

(i) The PAND probability of exceedance (Section 4.2.3) represented by the level curve at p = 

0.001. 

(ii) The tail dependence measures  and  (Section 4.2.2.2). 

We present here the diagnostic tools related to the level curve. The tools used to compare tails 

dependence measures can be found in Appendix E. Here we chose to compare our six models 
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with respect to their ability to reproduce a reference level curve from the underlying bivariate (X1, 

X2) distribution of the data lobj (‘obj’ is again used to indicate objective) which corresponds to an 

extreme joint probability p = 0.001. For each model i a level curve lobj,i is computed. Several 

methods and criteria have been used in the literature to compare level curves to a reference 

including comparing the curves with vertical point-wise distances between the underlying curves 

(Chebana and Ouarda, 2011). This approach finds its limitation when level curves do not share 

the same x-axis coordinate (X1 axis). 

 

In Figure 4.6 is presented our procedure for computation of the goodness-of-fit indicators 

(described in further detail below). In Figure 4.6 the example modelled and reference curves do 

not reach the same coordinate on the X1 axis, making it impossible to compare these two level 

curves between X2=0.0 and X2=0.3. Cooley et al. (2019) divided level curves into two parts, 

comparing six x-axis coordinates on one part and six y-axis coordinates on the other part, to 

overcome the aforementioned limitation. Here we chose to use a consistent criterion all along the 

curves to evaluate the distance between each modelled curve and the reference curve. The four 

steps we use are the following: 

(i) Each modelled and reference level curve is normalized by dividing its coordinates by 

their maximum values. With that process, the curves are bounded in the [0,1] by [0,1] 

space. The different indicators are then computed in this normalized space. 

(ii) Cartesian coordinates (x,y) of the modelled and reference level curves are transformed 

into polar coordinates (θ, r). 

(iii) Each modelled and reference level curve is discretized via linear interpolation into points. 

Each point corresponds to an angle value (triangles and dots on the curves in Figure 4.6). 

(iv) Points from both the modelled and reference level curves with the same angle are coupled. 

Indicators are computed at each of the 80 couples of points (see Figure 4.6). 
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Figure 4.6: Procedure for computation of the goodness-of-fit indicators. Two variables are given, X2 as a function 

of X1. The red triangles and red curve represent the modelled level curve from a given model. The blue circles 

and blue curve are the reference level curve from the underlying bivariate (X1, X2) distribution of the data. 

Distance between the curves is calculated along the radius at 80 (X1, X2) coordinates (e.g., between the blue circles 

and the red triangles). 

We used a weighted Euclidean distance (wd) as comparison criteria. The density of level curves 

(described in Appendix F2) allows one to weight the Euclidean distance of each of the 80 points 

by the local density of the curve. By weighting the Euclidean distance according to the reference 

bivariate distribution probability density function, we give more importance to the proper part of 

the curve where a bivariate event is more likely to occur, rather than the naïve part (here the naïve 

part is defined as where the bivariate event is less likely to occur) (Chebana and Ouarda, 2011; 

Volpi and Fiori, 2012).  

𝑤𝑑 = ∑ 𝑤𝑖( 

𝑁

𝑖=1

√(𝑥𝑚𝑜𝑑,𝑖 − 𝑥𝑟𝑒𝑓,𝑖)2 + (𝑦𝑚𝑜𝑑,𝑖 − 𝑦𝑟𝑒𝑓,𝑖)2 ) 
(4.19) 

 

Where the number of points N=80,  i=1,…,N, w is the weight, (𝑥𝑚𝑜𝑑 , 𝑦𝑚𝑜𝑑) are the coordinates 

of the modelled level curve and (𝑥ref, 𝑦ref) the coordinated of reference the level curve 

 Results 

Two analyses are conducted in parallel, one for asymptotic dependence (AD) and one for 

asymptotic independence (AI). In the case of asymptotic dependence, the Gumbel copula is used 

with 5000 data points. The χ value is the measure of interest under AD; values taken by χ have 

been presented in Section 3.1. For each χ value, we generated 100 realizations of the dataset from 
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the same underlying bivariate distribution. The 100 realizations generated have two purposes: (i) 

increase the robustness of the results and (ii) create a confidence interval around the median which 

was set at the 95% confidence level by taking the quantiles Q2.5 and Q97.5 of the 100 realizations. 

To confront this approach, we generated two sets of 100 realizations which showed very small 

variations in the values of Q2.5, Q50 and Q97.5 without impacting our interpretation of the 

results. In the case of asymptotic independence, the normal copula is used.  

 

The marginal distributions do not have any impact on the dependence structure (Nelsen, 2006; 

Genest and Favre, 2007). We show in Appendix E that marginal distributions also have a very 

small impact on the estimation of dependence measures. All the methods used in this study 

include a transformation of marginal distributions and the fitting of a GPD above an extreme 

threshold (Section 4.2.3). By varying the marginal distribution of the variables of our synthetic 

dataset we aim to capture uncertainties and errors arising from both the fitting of the marginal 

distributions and the dependence structure. 

 

For both asymptotic dependence AD and asymptotic independence AI, the objective level curve 

𝑙obj to be compared has been fixed at the probability 𝑝obj = 0.001. For each of the 60 bivariate 

datasets, the six models presented are fitted to the 100 realizations. The dependence measures 

𝜒̂ 𝑖 , 𝜂̂ 𝑖 as well as the level curve 𝑙 𝑜𝑏𝑗,𝑖 are estimated for every six models, with i⋲ (1:6) correspond 

to each model. We then use the diagnostic tool and criteria presented in Section 4.3.2 to compare 

the performance of the models. From the 100 realizations, 100 level curves 𝑙 𝑜𝑏𝑗,𝑖 are generated 

for each model. Three curves are designed: (i) the 2.5% quantile level curve, (ii) The median level 

curve, (iii) the 97.5 % quantile level curve.  

 

Analogously, for each of the diagnostic tools presented in Section 4.3.2, three values are 

computed: (i) the 2.5% quantile, (ii) the median, (iii) the 97.5% quantile. To assess more 

accurately whether the models manage to represent the synthetic data in the large value extremes, 

we compared their fitting capabilities to a naïve approach. Here, the naïve approach is an 

empirical level curve. For each of the 60 synthetic datasets, we compute the wd of the empirical 

level curves to the reference curves following the same steps as for the six models. The empirical 

wd (wdnaïve) is therefore compared to the wd of each model (wdm). Models that represent the data 

with more accuracy than a naïve approach (wdm<wdnaïve) are considered to be representative of 

the data. Figure 4.7 displays the values of the wd for each model applied to each bivariate dataset 

and highlights the cases where models outperform a naïve approach (blue bold). Squares are 

coloured according to the median of the wd and thickness of the edges is proportional to the size 

the confidence interval (i.e., the distance between the quantiles Q2.5 and Q97.5). 
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Figure 4.7: Weighted Normalized Euclidean Distance (wd) to the reference curve for all 60 different synthetic 

datasets. Fitting capacities of each model are represented. Values in cells and colours represent the median wd 

from low (dark green) to high (red). Bold blue values highlight cases where models are representative of the 

data. The thickness of borders represents the 95% uncertainty around the median value on a logarithmic scale. 

It is important here to note that we tested more AD (36-60%) cases than AI (24-40%) cases. To 

assess the flexibility of models, in addition to comparison to the naïve approach, we also consider 

the proportion of cases where models have a wd < 0.1. From Figure 4.7, we observe the 

following:  

− The Gumbel and normal copulas, which have been used to generate the synthetic datasets 

with AD and AI, generally outperform all the other models in AD and AI cases, 

respectively. 

− The conditional extremes model and the joint-tail KDE model are the most flexible 

models tested here as they can handle (Cond-Ex) 98% [72–100%] and (JT KDE) 97% 

[65–100%] of the situation with a wd < 0.1; these values reach 100% for the AI cases. 
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However, the Cond-Ex model is slightly more flexible, having a representative fit to more 

datasets (95%) than the JT-KDE model (68%). 

− The normal copula, even if asymptotically independent, is the most flexible copula model 

with wd < wdnaïve in 47% of the cases, more than the number of AD datasets. The normal 

copula has a low wd (<0.1) in 76% [60–90%] of the cases and has a representative fit to 

the data for every AI case and in some AD cases. 

− Gumbel and Galambos copulas have representative fits to only 57% of the AD datasets. 

Among the 36 AD cases, they fail to represent only two with χ=0.9. It is important to note 

that both aforementioned copulas cannot handle complete independence (=0.5) or 

negative dependence ( = 0.25).  

− The FGM copula can only handle one type of extremal dependence, which is asymptotic 

independence (AI) with  = 0.5. Consequently, it is the least flexible model in our results 

with a wd < wdnaïve.in only 10% of the cases.  

− Higher shape parameters of the margins are associated with poorer goodness-of-fit for all 

models. It is particularly striking with the conditional extremes approach which exhibits 

high uncertainty and high wd when both margins have a standard deviation σ=1.5.  

 

The Cond-Ex and JT-KDE provide close results according to Figure 4.7, despite adopting very 

different approaches. Thus, their flexibility arises from their semiparametric nature. Figure 4.7 

also displays the uncertainty of the estimate of wd. For all models, a more accurate fit is 

accompanied by a reduction in uncertainties. However, both Cond-Ex and JT-KDE have on 

average more uncertainty around its wd despite their good fitting capabilities. On average, copulas 

tend to have less uncertainty due to their parametric nature.  

 

However, the copulas are penalized by the weighting function as they usually reproduce quite 

well the naïve part of the curve. By considering again the percentage of situations with a criterion 

below 0.1, the normal copula has its performances reduced by the weighting function (–6% 

compared to d). The JT-KDE model has its performance boosted by the weighting function (+7% 

compared to d). 

  Application to natural hazards 

Results from the simulation study presented in the previous section (Section 4.3) can provide 

useful insights when modelling the interrelations between two natural hazards. In this section, we 

will show how results previously presented can be useful to identify the most relevant models for 

a given dataset according to its visual characteristics. The concordance (or discordance) of the 

relevant models can also increase (decrease) confidence around the results.  
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The methodology for model selection presented here is composed of five steps to select the most 

relevant models to estimate joint exceedance probability level curves: 

(i) The two-tail dependence measures are estimated empirically with a 95% confidence 

interval. Datasets with a tail dependence measure falling in that confidence interval are 

suggested as analogues to the studied bivariate dataset. To select relevant combinations 

of marginal distribution, a scatterplot is compared visually to density plots for the 60 

different datasets simulated in Section 4.3 and displayed in Figure 4.5.  

(ii) From the aforementioned 60 datasets, a set of one to six analogous datasets (i.e. with 

similar bivariate distribution) is taken. 

(iii) A confidence score is used to compare the abilities of each model for the datasets selected 

in step (ii). For each model, the confidence score is 𝑤𝑑̅̅ ̅̅  the average of the computed 

weighted Euclidian distance wd for all datasets selected in step (ii). By taking the average 

of wd, a poor fit on one analogous dataset will have a high influence on the confidence 

score.  

(iv) Models are fit to the bivariate hazard dataset and level curves from the most relevant 

models are kept. 

(v) Tail dependence measures are estimated using the most relevant model with a possible 

new iteration of the four previous steps according to the value of the dependence 

measures. 

 

To produce a confidence interval as was done in the simulation study (Section 4.3) and to visually 

measure the uncertainty associated with each level curve as in Section 4.3, we use a 

nonparametric bootstrap procedure. The function tsboot from the R package boot (Davison and 

Hinkley, 1997; Canty and Ripley, 2019) is used to generate 100 bootstrapped replicate datasets 

with the same number of observations as the original (but some are repeated). Our six models are 

then fitted to the original dataset and on the 100 bootstrapped replicates.  

 Rain and wind gusts at Heathrow Airport (Asymptotic independence) 

Here, we study the interrelation between daily extreme wind gusts (w) and extreme rainfall (r) at 

London Heathrow airport, UK for the period 1 January 1971 to 31 May 2018, both introduced in 

Figure 4.1. The relationship between wind and rainfall has been studied both globally (Martius 

et al., 2016) and locally (Johansson and Chen, 2003; Ming et al., 2015). These two hazards are 

often associated with different types of storms (Dowdy and Catto, 2017) and in particular cyclones 

(Ming et al., 2015; Raveh-Rubin and Wernli, 2016). In South England, these two hazards are 

mostly associated with extratropical cyclones in the winter season and thunderstorms in summer 

season (Hawkes, 2008; Anderson and Klugmann, 2014; Webb and Elsom, 2016; Hendry et al., 

2019).  
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The bivariate dataset used to study the interrelation between wing gusts and rainfall at Heathrow 

airport is composed of the following data: 

i) Daily Wind Gust (w): daily maximum wind gust at London Heathrow airport (UK) 

weather station where a gust is the maximum value, over the observing cycle, of the 3-

second running average wind speed (WMO, 2019). Wind gusts are short-lived wind peaks 

in speed that can inflict great damage during a storm. However, it might not capture the 

overall wind intensity (Met Office, 2019). The time range of the observations is 38 years, 

from 1 January 1971 to 31 May 2018 of which 74 days (0.4% of the data) had no values 

recorded and all other values in the dataset had w > 0 m s‒1. This observation data has 

been provided by the Met Office (2019).  

ii) Daily Rainfall (r): daily total precipitation in a grid cell containing London Heathrow 

airport (UK). The data have been extracted from the E-OBS gridded database (Cornes et 

al., 2018) which is formed from the interpolation of observations from 18,595 

meteorological stations through Europe and the Mediterranean (including Heathrow 

airport station). It has been shown that E-OBS has excellent correlation with other high-

resolution gridded datasets even if this correlation tends to decrease for extremes (Hofstra 

et al., 2009). However, by selecting a grid containing a weather station we limit 

uncertainties arising from interpolation. The spatial resolution in the E-OBS dataset is 

0.1° × 0.1° and the period covered is 1950 to 2019. Data from 1 January 1971 to 31 May 

2018 (38 years) in the cell containing Heathrow airport is used, with a total of 6074 days 

(35.1% of the dataset) having nonzero rainfall r > 0 mm d‒1.  

 

From 1 January 1971 to 31 May 2018, there are a total of 17,318 days (including leap years). Our 

bivariate wind gust-rainfall dataset is composed of those values where there is both non-zero 

rainfall r > 0 mm d‒1 and wind gusts w > 0 m s‒1 recorded, resulting in a total of 6044 bivariate 

observations (34.9% of the days in our record). An overview of both daily rainfall and daily wind 

gust is displayed in Figure 4.8 in the form of monthly violin plots, where the probability density 

of w and r at different values are given, smoothed by a kernel density estimator.  
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Figure 4.8: Violin plots of daily wind gust w (red) and daily non-zero rainfall r (blue) by month for the period 1 

January 1971 to 31 May 2018 at Heathrow airport weather station, UK. Diamonds represent the median of all 

values for that month from 1971–2018. Numbers at the top of the graph represent the average number of days 

per month where there is recorded both non-zero rainfall r > 0 mm d‒1 and wind gusts w > 0 m s‒1. Daily rainfall 

data from E-OBS (Cornes et al., 2018) and wind gust data (maximum 3 s wind velocity in a day) from the Met 

Office (2019).  

From Figure 4.8 we observe a seasonality in daily wind gust speed. January is the month with 

the highest median (diamond symbol) and range of most values in the violin plot while July is the 

month with the lowest median and range of most values in the violin plot. The daily non-zero 

rainfall median per month varies between 2.5 mm in February and 3.5 mm in June, with the 

highest individual daily values occurring in October (53.3 mm d‒1), May (49.6 mm d‒1) and June 

(49.2 mm d‒1). The dataset is also represented as a scatterplot in Figure 4.9. The scatterplot will 

be used for the model selection methodology presented at the beginning of Section 4.4. 



 Evaluating the efficacy of bivariate extreme modelling approaches for multi-hazard scenarios  

Page 134 

 
Figure 4.9: Days where there are recorded both daily wind gust (m s-1) w and nonzero daily rainfall (mm d-1) r 

> 0 mm d–1 at Heathrow airport (London, UK) for the period 1971–2018. Daily rainfall data from E-OBS 

(Cornes et al., 2018) and wind gust data (the maximum 3 s wind velocity in a day) from the Met Office (2019). 

Colours (legend) represent the bivariate density estimated from a kernel density estimator with higher values 

and lighter colours representing a higher density of points at that bivariate value (r, w). 

Extreme rainfall and extreme wind have a compound interrelation according to Tilloy et al. 

(2019). We then estimate the joint exceedance probability curve, corresponding to a PAND 

probability (Section 2.3).  

 

We now go through the four steps presented for rainfall and wind gusts in Heathrow. 

(i) From Figure 4.5 and Figure 4.9, along with empirical estimates of χ and η, we 

hypothesize that over our time range 1971–2018, daily rainfall and daily maximum wind 

gusts in London Heathrow Airport are asymptotically independent or weakly dependent 

(η = 0.5 / χ = 0.05 / χ = 0.1) and that both marginal distributions have a small shape 

parameter (AB, BB).  

(ii) This then gives us four analogous datasets and it is then possible to visually infer from 

Figure 4.6 which models are the most suitable for these conditions. The four analogous 

datasets are the following: 

1. χ = 0.05 and AB 

2. χ = 0.05 and BB 

3. η = 0.5 and AB 

4. η = 0.5 and BB 

5. χ = 0.1 and AB 

6. χ = 0.1 and BB 
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(iii) The confidence score for each model is 𝑤𝑑̅̅ ̅̅  the average of the weighted Euclidean 

distance wd from the four situations above. For the Gumbel and Galambos copulas, the 

cases of independence or negative dependence between variables are outside the 

modelling range (Section 2.3.1), and thus the confidence score for these models has been 

penalized by putting wd =1.0 for η = 0.5 and η = 0.25. The conditional extremes model 

has the smallest confidence score 𝑤𝑑̅̅ ̅̅ =0.02 and is representative for all six analogous 

datasets. The JT-KDE model has a 𝑤𝑑̅̅ ̅̅  = 0.03 and is representative for 4 out of 6 

analogous. The FGM and Normal copula have a confidence score of 𝑤𝑑̅̅ ̅̅  = 0.04 and are 

the only representative in AI cases. Gumbel and Galambos copulas have a confidence 

score of variable = 0.35 due to their penalty (Table 4.4). 

 

According to these three first steps, the conditional extremes model appears to be the most 

suitable. However, we selected the four most relevant models for the bivariate dataset of daily 

rainfall and daily wind gust at London Heathrow Airport. The conditional extreme model, the JT-

KDE model, the normal copula and the FGM copula all have low 𝑤𝑑̅̅ ̅̅  as can be seen in Table 4.4. 

Table 4.4: Euclidian weighted distance (wd) for datasets 1 to 6 based on wind-rainfall and six models, along 

with confidence scores (average of the wd for datasets 1 to 6). In blue bold are highlighted the values below 

the naïve approach wd and the average values, four models with confidence scores < 0.1 are highlighted in 

bold. 

Dataset Cond-Ex JT-KDE Gumcop Normalcop FGMcop Galamboscop 

1 0.03 0.03 0.02 0.04 0.04 0.02 

2 0.02 0.02 0.01 0.03 0.04 0.02 

3 0.02 0.02 1.00 0.01 0.01 1.00 

4 0.01 0.01 1.00 0.01 0.01 1.00 

5 0.02 0.04 0.02 0.06 0.07 0.02 

6 0.03 0.04 0.02 0.06 0.08 0.02 

Average 0.02 0.03 0.35 0.04 0.04 0.35 

 

(iv) For illustration and/or confronting our models with the data, the models are fit to the 

dataset and joint exceedance level cure are produced with a joint exceedance probability 

set at p = 0.001, corresponding to a bivariate return period of 8 years. However, another 

joint exceedance probability could have been chosen. 

 

In Figure 4.10 are displayed the level curves produced from the four models that were 

selected after steps (i) to (iii) above (Cond-Ex, JT-KDE, NormalCop and FGMCop) and 

presented in bold numbers in Table 4.4. 



 Evaluating the efficacy of bivariate extreme modelling approaches for multi-hazard scenarios  

Page 136 

  

Figure 4.10: Level curves for a Pand joint probability p = 0.001 of daily wind gust and daily rainfall at Heathrow 

airport (London, UK). Level curves from the four models selected through the model selection methodology are 

displayed. 

From Figure 4.10, we can observe that the conditional extremes model, the FGM and the normal 

copula all produce very similar joint exceedance curves and that their confidence intervals 

overlap. Table 4.5 displays the estimates (with bounds of the 95% confidence interval) of the two 

dependence parameters χ and η from the six models. These estimates converge toward a very 

weak asymptotic dependence. However, the estimation of dependence parameters in near 

independence is highly uncertain (Section 3.3.2).  

Table 4.5: Estimates of dependence parameters χ and η for extreme rainfall and wind gust at Heathrow airport 

for the time range 1971–2018 

Models Cond-Ex JT-KDE Gumcop Normalcop FGMcop Galamboscop 

χ 0.01 

[0.00,0.02] 

0.06 

[0.05,0.09] 

0.04 

[0.01,0.06] 

0.00 

[0.00,0.00] 

0.00 

[0.00,0.00] 

0.04 

[0.02,0.06] 

η 0.49 

[0.45,0.54] 

0.54 

[0.49,0.59] 

1.00 

[1.00,1.00] 

0.52 

[0.51,0.54] 

0.50 

[0.50,0.50] 

1.00 

[1.00,1.00] 

 Daily wildfire number and temperature extremes in Portugal (Asymptotic 

dependence) 

Here we present a second example of applying our models to natural hazards data, using as a case 

study daily temperature and daily number of wildfires in Portugal. Wildfire variables such as daily 

number and burned area depend on many influences such as wind speed/direction/gustiness, 

topography, type of fuel and soil moisture (Hinks et al., 2013). The aim of our study is not to 
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decipher the processes leading to a wildfire but rather to provide an exemplar study examining 

the relationship between the two variables, daily temperature and daily number of wildfires, in a 

given case study area. It has been shown that dry and warm conditions increase the risk of wildfire 

(Littell et al., 2009; AghaKouchak et al., 2018). Witte et al. (2011) established a direct link 

between a persistent heatwave and wildfire outbreaks in Russia and Eastern Europe in 2010. The 

Northern Mediterranean countries (Portugal, Spain, France, Italy and Greece) are particularly 

affected by summer fires (Vitolo et al., 2019). Among these, Portugal holds the highest number 

of wildfires per land area (Pereira et al., 2011). There are many environmental and anthropogenic 

factors influencing the rural fire regime in Portugal and making its territory a fire-prone area. 

However, the majority of rural fires are recorded during hot and dry conditions in the summer 

(Pereira et al., 2011). 

 

Here, we used the mainland continental Portuguese Rural Fire Database, that includes 450,000 

fires and covers the period 1980–2005 (Pereira et al., 2011), and includes data for all 18 districts 

in Portugal. This database is the largest such database in Europe in terms of the total number of 

recorded fires in the 1980–2005 period (Pereira et al., 2011) and includes fires recorded down to 

a size of 0.001 ha. From the Portuguese Rural Fire database, we chose to focus on the Porto 

district, which was the worst affected in the period (out of the 18 Portugal districts) in terms of 

the number of wildfires, with 21.6% of the total fire recorded in the dataset between 1980 and 

2005. The Porto district is situated in the northern part of Portugal (see Figure 4.11), has an area 

of 2,395 km² and is one of the most populated districts of Portugal with an estimated population 

of 1,778,146 in 2018 (Instituto Nacional de Estatística Portugal, 2019). 
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Figure 4.11: Portugal study area for the interrelation between extreme hot temperature and wildfire burned 

areas. The red area represents the Porto district in Portugal containing studied wildfire burned areas. The blue 

tiles represent cells from the high‐resolution gridded data set of daily climates over Europe (E-OBS) (Cornes et 

al., 2018) containing mean daily temperature data. Satellite image retrieved with ggmap (Kahle and Wickham, 

2013). © Google Maps (2020). 

The bivariate dataset used to study the interrelation between extreme temperature and wildfire 

burned areas in the Porto district is composed of the following data: 

a) Daily number of wildfires (f). Daily number of wildfires for the 26-year period 1980–

2005 for the Porto district were extracted from the Portuguese Rural Fire Database dataset 

from Pereira et al. (2011). To account for under-sampling of smaller wildfires in earlier 

years, and as suggested by Pereira et al. (2011), we used only those fires with a burned 

area AF ≥ 0.1 ha, resulting in 59,522 fires, an average of 6.3 fires per day (for those days 

with at least one fire occurrence) over the Porto district in Portugal (2395 km2).  

iii) Daily temperature data (t). Daily mean temperature was extracted from the E-OBS 

gridded dataset (Cornes et al., 2018). We approximate the area in red in Figure 4.11 

(Porto district) for each day with one temperature value by taking the average of daily 

temperatures in each of the six 0.25° × 0.25° cells represented by blue rectangles in 

Figure 4.11. This assumption reduces the confidence in return level values and adds up 

with other interpolation uncertainties arising from the data (Hofstra et al., 2009). 

Moreover, the temperature in the six cells are strongly correlated (Pearson correlation 

coefficient ρ > 0.98) and temperature variations are mostly due to the distance to the sea 

and altitude (Miranda et al., 2002). 
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The 26 years from 1980–2005 have a total of 9496 days. Of these, a total of 3442 days (36% of 

the days) have both non-zero days for the number of wildfires and a mean temperature value, 

which are used in our final bivariate dataset. An overview of both daily mean temperature and 

daily number of wildfires is displayed in Figure 4.12 in the form of monthly violin plots.  

 

Figure 4.12: Violin plot of those days with both daily mean temperature (red, upper violin plots) t and daily 

number of wildfires (blue, lower violin plots) f ≥ 1 fire d–1, by month for the period 1980–2005 in Porto district 

(Portugal). Only those wildfires with burned area AF ≥ 0.1 ha are included. Diamonds for both temperature and 

wildfires represent the median of all values in that month throughout the record. Numbers at the top of the 

graph represent the average number of days per month where there are recorded both a temperature value t 

and at least one wildfire (f ≥ 1 fire d–1).). Daily mean temperature data from E-OBS (Cornes et al., 2018) and 

wildfire data from Pereira et al. ( 2011). 

From Figure 4.12 we observe the seasonality in daily mean temperature with January the coldest 

month (median = 8.3°C) and August the warmest (median = 21.0°C). Daily number of wildfires 

(with burned area AF ≥ 0.1 ha) per month varies between the median of 1.0–2.5 fire d–1 in winter 

months (November to February) and 7.0–22.5 fire d–1 in summer months (from June to 

September). The dataset is also represented as a scatterplot in Figure 4.13. The scatterplot will 

be used for the model selection methodology presented at the beginning of Section 4.4. 
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Figure 4.13: Scatter plot of temperature as a dependence of wildfire occurrence in Porto district, Portugal for 

the period 1980–2005, for those days where there are recorded both mean daily temperature (t) and at least one 

fire, with f the number of wildfires in one day. Only those wildfires with burned area AF ≥ 0.1 ha are included. 

Daily mean temperature data from E-OBS (Cornes et al., 2018) and wildfire data from Pereira et al. (2011). 

Colours represent the bivariate density estimated from a kernel density estimator.  

As discussed at the beginning of this section, extreme (hot) temperature and wildfire are 

interrelated. Indeed, extreme (hot) temperature may promote the development of wildfires (Witte 

et al., 2011; Sutanto et al., 2020). According to Tilloy et al. (2019), this is a change condition 

interrelation (i.e., one hazard changes environmental parameter that moves toward a change in 

the likelihood of another hazard). We then estimate the conditional exceedance probability curve 

(Section 4.2.3).  

 

We now go through the four steps introduced at the beginning of Section 4.4. 

(i) From Figure 4.5 and Figure 4.13, along with empirical estimates of χ and η, we 

hypothesize that over our time range, there is asymptotic dependence for the mean daily 

temperature and the number of wildfire per day are asymptotically dependent (χ = 0.5 - 

χ = 0.3) and that one marginal distribution has a slightly small shape parameter and the 

other one is heavily right-skewed (AC, BC).  

(ii) This then gives us four analogous datasets and it is then possible to know from Figure 

4.8 which models are the most adapted to these conditions. The four datasets are the 

following: 

1. χ = 0.5 and AC 

2. χ = 0.5 and BC 

3. χ = 0.3 and AC 
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4. χ = 0.3 and BC 

(iii) The confidence score for each model is the average of the wd from the four 

aforementioned datasets. Based on Table 4.6, the normal copula and FGM copula do not 

seem suitable to model the joint occurrence of wildfire and extreme temperature as these 

poorly fit the four datasets. The Gumbel and Galambos copula (𝑤𝑑̅̅ ̅̅  = 0.02) and the 

conditional extremes model (𝑤𝑑̅̅ ̅̅  = 0.04) are representative for the four analogous 

datasets. The joint tail-KDE model has a confidence score 𝑤𝑑̅̅ ̅̅  = 0.05 and is representative 

for two analogous datasets. 

 

According to these three first steps, we can identify the most relevant model for the bivariate 

dataset of daily maximum temperature and daily wildfire occurrence in Porto district: the Gumbel 

copula, Galambos copula, the JT-KDE model and the conditional extremes model are the most 

relevant models for our dataset. 

Table 4.6: Weighted Euclidean distance (wd) for datasets 1 to 4 based on extreme temperature-wildfire and six 

models, along with confidence scores (average of the wd for datasets 1 to 4). ). In blue bold are highlighted the 

values below the naïve approach wd and the average values of the four models with confidence scores < 0.1 are 

highlighted in bold. 

Dataset Cond-Ex JT-KDE Gumcop Normalcop FGMcop Galamboscop 

1 0.03 0.04 0.02 0.12 0.29 0.02 

2 0.05 0.06 0.04 0.18 0.42 0.04 

3 0.03 0.05 0.02 0.13 0.2 0.02 

4 0.06 0.07 0.04 0.19 0.28 0.04 

Average 0.04 0.05 0.03 0.15 0.30 0.03 

 

(iv) For illustration and/or confronting of the models with the data, the models are fit to the 

dataset and the joint exceedance level curves are produced with a joint exceedance 

probability set at p = 0.001, corresponding to a bivariate return period of approximately 

8 years. 

 

In Figure 4.14 are displayed the conditional level curves produced from the four models that 

were selected after steps (i) to (iii) and shown in bold values in Table 4.6 (Cond-Ex, JT-KDE, 

Gumbelcop and GalambosCop). 
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Figure 4.14: Level curves for a Pand joint probability p=0.001 of daily mean temperature and daily number 

wildfire occurrences in Porto district, Portugal, for the period 1980–2005. Level curves from the four models 

selected through the model selection methodology are displayed. 

From Figure 4.14, we can observe that the JT-KDE and the Gumbel copula produce very similar 

conditional exceedance curves and that their confidence intervals strongly overlap. However, the 

conditional extreme model provides a lower estimate than the other approaches the number of 

wildfire conditioning on the temperature being above a given threshold.  

 

In Table 4.7, we present the estimates (with bounds of the 95% confidence interval) of the two 

dependence parameters χ and η from the six models provide a bit more insight about the 

dependence structure. These estimates converge toward a moderate asymptotic dependence 

varying from χ = 0.15 (Cond-Ex) to χ = 0.47 (GumCop). Even if all models tend to show 

asymptotic dependence between the two variables, estimates of η are less than 1.0 for the normal 

copula, the JT-KDE model and the Cond-Ex with values varying between 0.67 and 0.79. This still 

implies a positive association between the two variables. 

Table 4.7: Estimates of dependence parameters χ and η for mean daily temperature and daily occurrences of 

wildfire in Porto district for the period 1980–2005 

Models Cond-Ex JT-KDE Gumcop Normalcop FGMcop GalambosCop 

χ 0.15 

[0.06, 0.20] 

0.26 

[0.21, 0.30] 

0.47 

[0.45, 0.49] 

0.00 

[0.00, 0.00] 

0.00 

[0.00,0.00] 

0.46 

[0.44, 0.49] 

η 0.67 

[0.59, 0.72] 

0.67 

[0.62, 0.71] 

1.00 

[1.00, 1.00] 

0.79 

[0.78,0.80] 

0.50 

[0.50, 0.50] 

1.00 

[1.00, 1.00] 
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 Discussion and Conclusions  

Quantifying and measuring the interrelations between different natural hazards is a crucial 

element when adopting a multi-hazard approach (Gill and Malamud, 2014; Leonard et al., 2014). 

In this study, we focused on statistical approaches that are often used to characterize and model 

interrelations between hazards. Another focus has been on modelling relationships between 

hazards at an extreme level. In total, six statistical models with different characteristics (nature of 

asymptotic dependence, parametric/semi-parametric) were compared. Some of these models have 

already been used to study compound extremes in hydrology and climatology (Hao et al., 2018; 

Liu et al., 2018; Sadegh et al., 2018; Cooley et al., 2019). However, these have not been compared 

over a broad range of bivariate datasets and applied to the same natural hazards in the same 

location. 

 

This section will discuss the following three themes before a short conclusion: (a) choices 

influencing the results of the simulation study; (b) uncertainties at the interface between 

asymptotic dependence and asymptotic independence; (c) possible extensions of this approach to 

more than two hazards. 

 

Choices influencing the results of the simulation study. This study aimed to assess the fitting 

ability of several bivariate models to a broad range of datasets. To do so, models were compared 

in their ability to reproduce an extreme level curve (see Section 4.3.2.1). The level curve 

corresponding to the PAND probability has been selected as a comparison point because it is 

commonly used in the literature and is relevant for practitioners. The choice of this level curve 

and its shape could influence our results. The extreme level curve probability was set at p = 0.001. 

The multivariate regular variation framework (Resnick, 1987) provides evidence supporting the 

fact that the dependence structure remains identical in the whole extreme domain. However, some 

results shown in Section 4.3.3 might have been influenced by the value of the joint exceedance 

probability. In particular, it is likely that when decreasing the level curve probability (i.e., to more 

extreme values), the flexibility and abilities of the asymptotically independent normal copula will 

decrease. There are many copulas other than the four selected in this study (Nelsen, 2006; Sadegh 

et al., 2017) that have been developed. Nevertheless, we believe the four copulas used in this 

study are suitable for bivariate extreme value analysis and are amongst the most widely used in 

the literature (Genest and Favre, 2007; Genest and Nešlehová, 2013). Another influential choice 

in this study has been the number of synthetic data points generated in each realization of the 

dataset. The number of data points and data set size is an important influence on uncertainty in 

natural hazard modelling and probabilistic approaches (Frau et al., 2017; Liu et al., 2018). For 

each simulation, we simulated n = 5000 data points. Some other simulation studies took a higher 

number of data points (Zheng et al., 2014; Cooley et al., 2019); however, we replicated 100 times 
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and produced confidence intervals, thus ensuring consistency of our results. We also found that 

threshold selections, to fit the generalized Pareto distributions of the marginal distributions and 

to estimate the extremal dependence measures, also have an influence on our results. 

 

Uncertainties at the interface between asymptotic dependence and asymptotic independence. 

From the results of the simulation study (Section 4.3.3) and the two case study applications 

(Section 4.4), one can observe that the interface between asymptotic dependence and asymptotic 

independence can be unclear. In Section 4.3.3, we discussed the decrease in model performance 

and the increase in uncertainty for low values of χ and high values of η. Taking the assumption of 

asymptotic independence or asymptotic dependence can have a significant impact on the 

estimation of joint return levels. We find that extra care is required when dealing with bivariate 

datasets which are near independence as in Section 4.4.1.  

 

Possible extension of the approaches to more than two hazards. As presented through this chapter, 

the study of interrelations between natural hazards has primarily been done by hazard pairs (e.g., 

Gill and Malamud, 2014). Dependence measures and a variety of different models or level curves, 

all presented in this article, are powerful tools to assess, quantify and model interrelations between 

two hazards. However, in many cases, multi-hazard events include more than two hazards 

interacting in various ways (e.g., Gill and Malamud, 2014; Leonard et al., 2014). The use of 

models presented in this article can be extended to more than two variables, sometimes with 

disadvantages. One of these disadvantages is that the parametric nature of copulas leads to a lack 

of flexibility when going to higher dimensionality (Bevacqua et al., 2017; Hao et al., 2018). The 

JT-KDE and Cond-Ex models are suitable for higher dimensions (Davison and Huser, 2015; 

Cooley et al., 2019), although these have not been tested for high dimensional multi-hazard 

modelling yet (Tilloy et al., 2019). Recent research conducted suggests pair-copula construction 

(Bedford and Cooke, 2002; Hashemi et al., 2016; Bevacqua et al., 2017, Lui et al., 2018) and 

non-parametric Bayesian networks (NPBN) (Hanea et al., 2015; Couasnon et al., 2018) can be 

used to model multi-hazard events with more than two hazards. The vine copula framework 

allows one to select different bivariate copulas for each pair of variables, providing great 

flexibility in dependence modelling (Brechmann and Schepsmeier, 2013; Hao and Singh, 2016). 

Non-parametric Bayesian networks, which are associated with the structure of Bayesian network 

and copulas (Hanea, 2010; Hanea et al., 2010, 2015), have been used to study multiple 

dependencies between river discharge and storm surges in the USA during a hurricane (Couasnon 

et al., 2018).  

 

In conclusion, we have compared and examined the strength and weaknesses of six distinct 

bivariate extreme models in the context of hazard interrelations. These six models are grounded 

in multivariate extreme value theory and represent the diversity of approaches (e.g., non-
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parametric vs parametric) currently applied to hazard interrelation analysis. With this study, we 

aimed to contribute to a better understanding of the applicability of bivariate extreme models to 

a wide range of natural hazard interrelations. The methodology developed in this article is aimed 

to be widely applicable to a variety of different hazards and different interrelations, here 

represented by the 60 synthetic datasets created. Abilities of each model have been assessed with 

two metrics: (i) dependence measure; (ii) bivariate return level (level curves). These two metrics 

and the different diagnostic tools developed in this study offer new intuitive ways to decipher the 

dependence between two variables. We recommend selecting a range of models rather than one 

when studying interrelations between two hazards. To highlight the benefits of the systematic 

framework developed, we studied the dependence between extremes (natural hazards) of the 

following environmental data: (i) daily precipitation accumulation and daily maximum wind gust 

(maximum over a period of 3 s) at Heathrow airport (UK) over the period 1971–2018; (ii) daily 

mean temperature and daily number of wildfires in Porto district, Portugal over the period 1980–

2005. The two datasets represent different hazard interrelations: (i) compound interrelation 

between extreme wind and extreme rainfall and (ii) change condition interrelation where higher 

air temperature change condition for wildfire occurrence. In both cases, a sample of the most 

relevant models among the six used in this study has been selected and fitted to the bivariate 

datasets. The good agreement in the estimation of bivariate return period between models 

corroborates the relevance of the comparison metrics we developed. 
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Chapter 5: Spatiotemporal features of 

compound wind and precipitation extremes in 

Great Britain 

Summary: 

Interrelations between natural hazards operate on different spatial and temporal scales than single 

natural hazards. In this chapter, a methodolgy to identify spatiotemporal clusters of climate 

extremes and their interrelations is presented, the Compound Hazard Cluster Identification 

(CHCI) method. The approach is applied to the analysis of compound precipitation and wind 

extremes. This is done by extracting hourly values of precipitation and wind gust for the period 

1979–2019 from climate reanalysis (ERA 5) within a region including Great Britain and the 

British channel.  Extreme values (above the 99% quantile) of precipitation and wind gust are 

clustered with the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

algorithm. Compound hazard clusters that correspond to the spatial overlap of hazard clusters 

during the aggregated duration of the two hazards are then identified. The method's ability to 

identify extreme precipitation and wind events is assessed with a catalogue of 157 significant 

events (96 extreme precipitation and 61 extreme wind events) that occurred over the period 1979–

2019. Spatial and temporal co-occurrences between historic events and spatiotemporal clusters 

are computed. We find a good agreement between CHCI outputs and the catalogue with an overall 

hit rate (ratio between the number of joint events and the total number of events) of 93.7%. A 

total of 4555 compound hazard clusters are detected with this method over the period 1979–2019. 

By analysing these clusters, the study finds that the occurrences of wind and rain events are 

dependent, with significant spatial and seasonal variabilities. The main hotspots for compound 

hazards events are found to be on the South coast of England and mountainous areas. The months 

April to September were found to have a much lower occurrence of compound hazards events 

compared to October to March, indicating a link with the extratropical cyclone season. 
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 Introduction 

Spatial and temporal scales are significant contributors to the natural processes that result in 

extremes or natural hazards (e.g., geomorphic: Schumm and Lichty, 1965; Phillips, 1988; 

atmospheric: Orlanski, 1975; hydrologic: Blöschl and Sivapalan, 1995; ecologic: Schneider, 

1994). Here, the spatial scale (the ‘footprint’) refers to the area over which the hazard occurs. The 

temporal scale is the duration over which the hazard acts on the natural environment. The extent 

of the temporal and spatial scales of these natural hazards includes many orders of magnitude, 

which can influence the relationship between natural hazards (Gill and Malamud, 2014; Leonard 

et al., 2014).  

 

Spatiotemporal clustering methods applied to environmental data can be powerful tools to 

understand the scales of different natural hazards by identifying natural hazard clusters (Barton 

et al., 2016). Such methods allow the extraction of spatiotemporal and intensity characteristics of 

natural hazard clusters. The estimation of such characteristics is relevant when defining and 

understanding the potential impacts of natural hazards and their interrelations on society. 

Examples include the following:  

− The duration of precipitation events (Yue, 2000; Vorogushyn et al., 2010) has a 

significant role in dike failure, landslide triggering and flood losses.  

− The relationship between the intensity, duration and area of heatwaves (Winter and Tawn, 

2016; Vogel et al., 2020) and drought (Corzo Perez et al., 2011; Zhang et al., 2015; 

Tosunoglu and Can, 2016) directly influences the severity of such events.  

 

This chapter proposes a methodology for Compound Hazard Clusters Identification (CHCI), 

which we use to analyses the spatiotemporal features of wind and precipitation extremes in Great 

Britain, 1979–2019. This CHCI methodology is based on spatiotemporal clustering of extreme 

values, which are extracted from a gridded atmospheric dataset, the ERA5 climate reanalysis 

(Hersbach et al., 2019). Compound hazard events in space and time are defined and identified 

from independent clusters of extreme wind and extreme precipitation (Figure 5.1). The 

identification of compound hazards is performed using hazard clusters rather than grid cells 

(Martius et al., 2016; Ridder et al., 2020). With this approach, we propose a robust method to 

capture the spatiotemporal features of compound hazards at various scales (from hours to days 

and from local to regional scale) with an application on compound wind and precipitation 

extremes in Great Britain. 
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Figure 5.1: Cartoon illustration of a spatiotemporal compound hazard over Great Britain. Hazard A (orange) 

is a cluster of extreme occurrences of variable x and Hazard B (violet) is a cluster of extreme occurrences of 

variable y. In (a) and (b) are shown two hypothetical examples of their overlap, each a compound hazards event 

(CHE). 

To illustrate our methodology, we will use two variables, extreme wind and extreme precipitation, 

both significant hazards in Great Britain (Pinto et al., 2012; Huntingford et al., 2014). These two 

hazards are usually associated with extratropical cyclones and severe storms (Zscheischler et al., 

2020). Extreme wind and extreme precipitation have been defined as compound hazards (i.e., 

statistically dependent without causality) (Tilloy et al., 2019). Events, including precipitation and 

wind extremes, have been identified as multivariate compound events (co-occurrence of multiple 

hazards in the same geographical region, causing an impact) (Zscheischler et al., 2020). The 

combination of wet and windy extremes can result in different and more significant impacts than 

the sum of the individual impacts due to extreme wind and extreme rainfall (e.g., the access to a 

flooded power plant due to heavy rain hindered by strong winds or road blocked by fallen trees) 

(Martius et al., 2016). Previous studies have quantified the co-occurrences of extreme wind and 

extreme rainfall at large scales (Raveh-Rubin and Wernli, 2015; Martius et al., 2016) by using 

climate reanalysis data, thus providing a common spatiotemporal frame to study multiple 

variables. To detect the occurrence of extreme wind and extreme precipitation events, Raveh-

Rubin and Wernli (2015) averaged wind and precipitation anomalies spatially and temporally 

while Martius et al. (2016) used a threshold approach (set up a threshold above which wind and 

precipitation are considered as hazards).  
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This article is organized as follows. In Section 5.2, the spatiotemporal clustering algorithm used 

in the study and the gridded data retained for the analysis is introduced. Then in Section 5.3, the 

CHCI method to construct compound hazard clusters from extreme values of environmental 

variables is presented, along with the fundamental concepts associated with return periods in a 

bivariate framework. Section 5.4 assesses the ability of the CHCI method to identify hazard 

events, where natural hazard clusters are confronted with a set of 157 major hazard events that 

impacted Great Britain, 1979–2019. Spatiotemporal and intensity properties of detected single 

and compound hazard clusters are then analysed and discussed. Finally, in Section 5.5, the 

limitations of the CHCI method and opportunities for its generalisation to other hazard 

interrelations are discussed. 

 Spatiotemporal clustering 

Clustering is broadly defined as any process of grouping data by their similarities (Ansari et al., 

2020). It is a fundamental of data analysis in a wide variety of disciplines (e.g., biology, 

epidemiology, communication, criminology) (Xu and Tian, 2015). The large increase in 

spatiotemporal data available has created increased opportunities for spatiotemporal clustering 

approaches (Shi and Pun-Cheng, 2019; Ansari et al., 2020). Many methods have been developed 

to cluster and classify data (e.g., partition, hierarchical, density-based, model-based clustering; 

see for a review Milligan and Cooper, 1987; Xu and Tian, 2015). Some clustering methods have 

been adapted to spatiotemporal clustering (e.g., Birant and Kut, 2007; Agrawal et al., 2016; Yuan 

et al., 2017; Huang et al., 2019; Ansari et al., 2020). Spatiotemporal clustering is usually done on 

three different values characterising the data: two spatial coordinates and time (Ansari et al., 

2020).  

 

Three main approaches to spatiotemporal clustering exist (each with their own methods), 

including:  

a) Point events spatiotemporal clustering: This approach aims to discover groups of events 

that are close to each other in space and time. It is used, for example, to cluster seismic 

events in time and space (Georgoulas et al., 2013). 

iv) Moving clusters: This approach aims to detect behaviours of moving objects. While the 

identity of a moving cluster does not change over time, other attributes might change. An 

example is the spatiotemporal clustering of lightning strikes resulting from moving 

convective storms (Strauss et al., 2013). 

v) Trajectory clustering: This approach aims to capture groups of objects with similar 

movement behaviours. In contrast to the moving cluster approach, where the moving 

object of interest, the variable of interest in trajectory clustering is the movement itself 
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and not the object (Yuan et al., 2017). Examples include cyclone track clustering in 

different world regions (Ramsay et al., 2012; Rahman et al., 2018).  

 

The characteristics of the data used influences the choice of the spatiotemporal clustering 

methodology type. Climate reanalysis gridded data for wind and precipitation is used here, with 

a temporal resolution of one hour and a spatial resolution of 0.25° × 0.25°. Each grid cell 

containing a hazard occurrence (extreme wind, extreme precipitation, or both) is treated as a point 

by the clustering algorithm. Therefore, the point events spatiotemporal clustering approach is used 

here. 

 

 Spatiotemporal data and study area 

Spatiotemporal data includes information about the location (here longitude and latitude) and time 

of the variable of interest. Here, the variables of interest are two atmospheric natural hazards: 

extreme precipitation and extreme wind. Spatiotemporal datasets of hydrometeorological data can 

be derived from interpolated observations (e.g. E-OBS), climate model outputs (e.g., ERA 5) or 

remote sensing (e.g., CMORPH) To ensure spatial and temporal consistency between the two 

hazards, we use a single gridded dataset based on climate reanalysis data. Climate reanalysis 

offers homogeneous datasets for numerous environmental variables, including precipitation and 

wind gust, with different spatial and temporal resolutions. Those data are outputs of climate 

models calibrated on observed data across the world (Brönnimann et al., 2018). Two major 

climate reanalysis datasets are the following:  

i) the Climate Forecast System Reanalysis (Saha et al., 2010) developed by the USA 

National Centre for Atmospheric Research (NCAR, 2020);  

ii) ERA5 (Hersbach et al., 2020) developed by the European Centre for Medium-Range 

Weather Forecasts (ECMWF, 2020).  

ERA5 (ECMWF Reanalysis 5th Generation) is used in the present study. 

 

ERA5 was released in 2019 by ECMWF and benefits from the latest improvements in the field 

(Hersbach et al., 2020). ERA5 data (ECMWF, 2020) is available for 1979 to present (up to 

September 2019 is used here), with a spatial resolution of 0.25° × 0.25° and an hourly temporal 

resolution. The data resolves the atmosphere using 137 levels from the surface up to a height of 

80 km (ECMWF, 2020). ERA5 data are generated with a short forecast of 18 h twice a day (06:00 

and 18:00 UTC) and assimilated with observed data (ECMWF, 2020).  

 

Reanalysis data are not observed data and are obtained from short-term model forecasts and can 

be affected by forecast errors (Pfahl and Wernli, 2012). Furthermore, reanalysis data offers a large 

amount of usable data for spatiotemporal clustering methods, meaning that the method used in 
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this study could be easily extended to other atmospheric or hydrological hazards (e.g., extreme 

temperature) (Sutanto et al., 2020). The two following variables are extracted from the product: 

−  Extreme rainfall (r): accumulated liquid and frozen water, comprising rain and snow, 

that falls to the Earth's in one hour (mm). This value is averaged over a grid cell. 

− Extreme wind (w): hourly maximum wind gust at a height of 10 m above the surface of 

the Earth (m s-1). The WMO defines a wind gust as the maximum of the wind averaged 

over 3 s intervals. As this duration is shorter than a model time step, this value is deduced 

from other parameters such as surface stress, surface friction, wind shear and stability. 

This value is averaged over a grid cell. 

 

Limitations of ERA5 

The use of a climate reanalysis product to study extreme events induces several limitations 

compared to observational data (Donat et al., 2014; Angélil et al., 2016). In climate reanalysis, 

variables are computed over a grid cell, and the resulting value is, therefore, an average. This 

often leads to a smoothing of local extreme values (Donat et al., 2014). The accuracy of reanalysis 

data also depends on various observation types (Hersbach et al., 2019). ERA5 benefits from the 

latest methodological improvements in data assimilation and modelling (Hersbach et al., 2018; 

ECMWF, 2020). Compared to its predecessor ERA-Interim, it offers finer spatial and temporal 

resolution, but most importantly produces more accurate weather and climate data in most world 

regions. Despite these improvements, the spatial resolution is still relatively coarse and small 

scale convective events are still poorly captured as it is the case for most reanalysis products 

(Holley et al., 2014; Kendon et al., 2017; Beck et al., 2018a). Furthermore, precipitation is not 

assimilated (calibrated on observations) in ERA5 outside the USA. Nevertheless, ERA5 seems to 

outperform other global reanalysis products for extreme precipitation (Mahto and Mishra, 2019) 

and captures a majority of observed daily precipitation extremes over Germany and Europe (Hu 

and Franzke, 2020; Rivoire et al., 2021). It also allows us to conduct the analysis at an hourly 

time scale rather than daily. 

 

Discussion of the Study area and its Coherence Around Figure 5.2 

The rectangular study area selected for the spatiotemporal clustering contains Great Britain and 

North-West France (Figure 5.2). It has an area of 647,900 km2 which represents approximately 

500 km (33 cells) by 1200 km (45 cells), or a total of 1485 cells, each cell 0.25° × 0.25° (cells 

range from 18.6 km × 27.8 km in the south of the study region, to 14.3 km × 27.8 km in the north). 

The temporal resolution used is one hour over the period from January 1979 to September 2019. 

When considering the study area boundaries, two factors are important to consider: (i) the 

variability of climate, geology or topography within the study area. (ii) the possibility of not 

capturing an event in its totality because of edge effects (Cressie, 1993).  
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Both Great Britain and northern France share the same temperate oceanic climate (Koppen 

climate classification Cfb) (Beck et al., 2018b). However, within this broad region, there are 

variations in precipitation and wind exposure, particularly with coastal areas being more exposed 

to high wind and mountainous areas being wetter (Hulme and Barrow, 1997). This variability is 

taken into account into our methodology when sampling extreme events (this is discussed below 

in Section 5.3.1). 

Edge effects have the potential to bias the clustering analysis as points on the edge have fewer 

neighbouring cells than other cells within the domain (Cressie, 1993). To mitigate this issue, a 

buffer area is set around the domain (Figure 5.2). Clusters need to include extreme values (points) 

that are some distance away (here 2 cells) from the edge of the study area. A cluster of extreme 

values (points) exclusively within the buffer area will not be retained, but values in the buffer area 

can be part of other clusters. 

 

Figure 5.2: Study area with the grid representing the 1485 cells used for spatiotemporal clustering of extreme 

rain and extreme wind. The area includes Great Britain and the British channel. The red frame is the buffer 

area. 
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 Clustering algorithm: DBSCAN 

The specific clustering method used here for identifying spatiotemporal clustering of extreme 

wind and precipitation point events needs to comply with different characteristics of our 

spatiotemporal data: 

(i) The large size of the dataset: ERA5 data is available for 40 years with an hourly timestep; 

this implies a significant amount of data over our study area of 1485 cells (>5108 values). 

(ii) Noise level: The method used to sample extreme occurrences of wind gust and 

precipitation (see Section 5.3.1) can produce objects scattered in space and time, which 

cannot be associated with a hazard cluster. 

 

To ensure flexibility in the specific point events clustering methodology developed, it was decided 

not to assume a given shape for the natural hazard clusters. The characteristics of climate 

reanalysis data and the absence of assumptions about the shape of our hazard clusters guided the 

choice of a clustering algorithm toward the Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) algorithm (Ester et al., 1996). There are five main types of clustering methods 

that can be used for a point event spatiotemporal clustering: Density-based, Partitional, 

Hierarchical, Grid-based and Model-based methods (Birant and Kut, 2007; Xu and Tian, 2015). 

Density-based clustering methods aim to define a structure that accurately represents the 

underlying density of the data (Hahsler et al., 2017). Density-based clustering methods are non-

parametric methods able to find clusters with arbitrary shapes and do not require the 

predetermination of the number of clusters to be detected (Birant and Kut, 2007).  

 

DBSCAN is a clustering algorithm for identifying clusters with arbitrary shapes (Shi and Pun-

Cheng, 2019). The primary idea behind DBSCAN is that for each point of a cluster, the 

neighbourhood of a given radius (ε) has to contain at least a minimum number of points (μ), i.e. 

the density in the neighbourhood needs to be above a threshold (Ester et al., 1996). The shape of 

a neighbourhood is conditioned by choice of the distance function used (e.g., Manhattan, 

Euclidean, Minkowski) (Ester et al., 1996). DBSCAN estimates the density around each data 

point by counting the number of points in the radius ε. DBSCAN identifies three types of objects: 

(i) core points; (ii) border points; (iii) noise points (Hahsler et al., 2017). A point c is a core point 

if at least μ other points are within the distance ε of it. Points that are not core points but in the 

neighbourhood of core points are called border points. All points not reachable from any other 

point are outliers (Ester et al., 1996) (see Figure 5.3). To create clusters, a key concept of the 

method is the density-reachability. Density-reachability is obtained when there is a chain of core 

points where one falls in the neighbourhood (distance<ε) of the next (see Figure 5.3). All the 

points from the chain are said to be “density-connected” and form clusters (see Figure 5.3). Each 

cluster contains at least one core point (Yuan et al., 2017). Figure 5.3 illustrates the basic concepts 

and terms of DBSCAN in two dimensions with Euclidean distance as a distance metric. For more 
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details on the DBSCAN algorithm, the reader can refer to Ester et al. (1996) and Hahsler et al. 

(2017) for details about implementing the algorithm in R. 

 

Figure 5.3: illustration of DBSCAN. Basic concepts and terms: dashed large circles represent the distance with 

a radius ε. Small red filled circles (a, b, c, d) are core points. Small black circles (red outline) (e, f, g, h, i) are 

border points. Black circles (no red outline) (j, k, l) are noise points. Points i and d are density-reachable from 

a; i and e are density-connected via object a. Black arrows represent the connection between two density-

reachable points. The cluster detected by DBSCAN contains points a, b, c, d, e, f, g, h, i and j, k, l that are noise 

points. 

 

The two input parameters of the DBSCAN algorithm are the density threshold μ and neighbour 

parameter ε and are set by the user. The usual rule to follow when defining μ is to use at least the 

number of dimensions of the dataset plus one (i.e., three for two-dimensional data as in Figure 

5.3). Regarding the ε parameter, the selection is usually made by plotting the points’ kNN 

distances (i.e., the distance to the kth nearest neighbour) in decreasing order and identifying the 

knee in the plot (Hahsler et al., 2017) (see Section 5.3.2). In this study, the rules mentioned above 

are associated with considerations arising from the definition of hazard objects (Section 5.3.2).  

 

DBSCAN relies heavily on forming neighbourhoods. A simple approach is to compute the 

distances to all other points to find the closest points. This requires O(n) operations for each time 

a neighbourhood is needed, with n being the number of data points. Since the operation is repeated 

for each data point once, this results in an O(n2) runtime complexity. As a result, the size of the 

full distance matrix becomes very large and is slow to compute for medium to large data sets. To 

reduce computation time, spatial indexing methods provide a mechanism to quickly locate single 

or multiple objects and extract desired information from a database. A spatial index is a data 

structure that optimizes data processing in large datasets (Azri et al., 2013). DBSCAN relies on 

space partitioning data structure called k-d trees (Bentley, 1975). The k-d trees divide the space 

into non-overlapping regions and allow DBSCAN to run more efficiently in sub-linear time using 
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on average only O(log(n)) operations per query. The result is a reduced runtime complexity of 

O(n log(n)) (Hahsler et al., 2017).  

 Methodology for compound hazard clusters identification (CHCI) 

Samples of extreme events are extracted from the ERA5 data. The DBSCAN algorithm is used to 

create spatiotemporal clusters of (i) extreme rainfall events; (ii) extreme wind event. Wind and 

rain clusters are then paired according to their spatial and temporal overlap to create compound 

hazards clusters. The methodology to create spatiotemporal clusters is described in Figure 5.4, a 

flowchart of the method steps. 

 

 

Figure 5.4: Flowchart of the methodology developed, Compound Hazard Cluster Identification (CHCI), for 

wind and rainfall data in Great Britain.  
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Figure 5.4 represents the main steps and data used to create compound wind-rain clusters in 

Chapter 5. Three main steps which are discussed in this section are highlighted in Figure 5.4: 

(i) The definition of a threshold u selected to sample extreme events (Section 5.3.1) 

(ii) The setting of the ratio r of the spatiotemporal scaling parameters and the clustering 

procedure (Section 5.3.2) 

(iii) The identification of spatiotemporal overlap between hazard cluster to create compound 

hazard events (Section 5.3.3)  

The sensitivity of the procedure displayed in Figure 5.4 to the different input parameters is 

discussed and quantified in Appendix G.  

 Defining a hazard threshold 

The spatiotemporal methodology developed here uses extreme occurrences of climate variables 

proxies for the occurrence of natural hazards, in this case, extreme wind and extreme rainfall. The 

use of a threshold to analyse the spatiotemporal occurrence of different extremes and their 

potential combinations have been done on daily data by Martius et al. (2016), Sedlmeier et al. 

(2018) and Sutanto et al. (2020). In the latter two studies, two approaches are used to define the 

value of a threshold: (i) an impact-based approach where the threshold is related to a tipping point 

where impacts (e.g., to society) start occurring (Sedlmeier et al., 2018); (ii) a percentile-based 

approach where the threshold is related to an empirical extreme quantile of the studied variable 

(Tencer et al., 2014; Visser-Quinn et al., 2019; Sutanto et al., 2020). In the second approach, 

hazards are extreme events relative to the distribution of the studied variable. 

 

The percentile-based approach was chosen here as it provides a large sample size for robust 

statistical analysis. The percentile-based approach, while not being linked to a specific impact, 

can also be impact-relevant (Zhang et al., 2011), with extreme occurrences of hourly maximum 

wind gusts and hourly accumulated precipitation potentially leading to a negative impact on 

society. The connection between maximum wind speed and impact has been broadly 

acknowledged (Pinto et al., 2012). It has been shown that a local 98th percentile is an impact-

relevant wind threshold (Ulbrich et al., 2009). However, as our data are not local, a 99th percentile 

was used here to increase the probability of detecting potentially damage-relevant events.  

 

The choice of an impact-relevant threshold for rainfall is more complex, as the impact of extreme 

precipitation depends on the duration and the intensity of an event. Martius et al. (2016) selected 

the 98th percentile of daily precipitation to define their extreme precipitation events. Pfahl et al. 

(2014) used the 99th percentile as a threshold for extreme precipitation. For the sake of 

consistency, the same percentile is used for the definition of extreme events of both hazards. Our 

data's hourly temporal resolution also allows us to use the 99th percentile while keeping a large 

sample size. The threshold is computed for each of the 1485 cells of the domain studied. The 
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threshold value varies between u = 16.6 m s-1 and u = 26.8 m s-1 for hourly maximum wind gust 

and between u = 1.46 mm h-1 and u = 2.74 mm h-1 for precipitation. The value of this the selected 

percentile (here 99th) and the corresponding threshold value has a significant influence on the 

clustering procedure (Appendix G)   

 

The threshold values u for wind gust and precipitation over the study area are displayed in Figure 

5.5. In this figure, the wind gust threshold is higher in coastal regions and the North of England, 

Scotland and Wales, whilst South England and North-West France have significantly lower 

threshold values. For precipitation, one can observe a clear division between the Eastern and 

Western part of Great Britain, with the western part having significantly higher threshold values. 

The sample of extreme events is composed of two distinct sets: (i) occurrences of extreme wind 

gust and (ii) occurrences of extreme precipitation. These extreme events are then represented as 

point objects with coordinates in space (latitude and longitude) and time (date). Here, both hazards 

are studied separately before being paired into compound hazard events. The clustering algorithm 

is then applied to the points representing extreme wind and precipitation values.  

 

 

Figure 5.5: Threshold values used to extract extreme values for the clustering process. The values correspond to 

the 99th percentile on each grid cell during the period 1979–2019 for (a) hourly maximum wind gust (w) and (b) 

hourly rainfall accumulation (r). Data from ERA5 (Hersbach et al., 2020). 

 Hazard events and cluster construction 

A method for defining thresholds and sampling extreme values has been presented in Section 

5.3.1. These extreme values are the input data for the cluster construction. Hazard events are 

defined here as clusters of these values in space and time representing a singular phenomenon's 

footprint.  
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To perform spatiotemporal clustering with DBSCAN, Birant and Kurt (2007) used two neighbour 

parameters ε, one for spatial values and one for non-spatial (i.e., temporal) values in their ST-

DBSCAN algorithm. The distance measure they used for both spatial and non-spatial values is 

the Euclidean distance. The Euclidean distance is preferred to other distance measures in this 

study for simplicity. Here, one distance measure is used for both space and time as it is 

implemented in the original DBSCAN algorithm. The spatiotemporal domain is then assumed to 

be a space-time cube as is done in various studies (Bach et al., 2014). One of the advantages of 

this approach is that it is possible to take advantage of the spatial index structure (see Section 2.2) 

to significantly speed up the runtime complexity (Hahsler et al., 2017). Three parameters are 

ruling the clustering procedure: (i) the relationship between spatial distance and temporal lag; (ii) 

the density threshold (μ) for our cluster; (iii) the neighbour parameter ε. These three parameters 

are now discussed: 

(i) First parameter: the relationship between spatial distance and temporal lag. The first 

step of our cluster event construction is to define the importance of spatial distance 

relative to temporal distance when computing the Euclidean distance between objects. 

This is done according to physical considerations. Each object in our input data represents 

one occurrence of an extreme event in one grid cell. Each grid cell is 0.25° latitude (≃27.8 

km) by 0.25° longitude (ranging from 14.3 km in the southern part of our study area to 

18.6 km in the northern part), with areas of grid cells ranging from 397 km2 (in the south 

of our study area) to 517 km2 (in the north). The distance between each extreme value is 

at least one hour. Scaling factors are then introduced to give more importance to space or 

time distance in a three-dimensional space-time cube (Ansari et al., 2020). The 

spatiotemporal Euclidean distance dp–q between two points p and q is expressed as: 

𝑑𝑝−𝑞  =  √𝑎(𝑥𝑝 − 𝑥𝑞)2 + 𝑎(𝑦𝑝 − 𝑦𝑞)2 + 𝑏(𝑡𝑝 − 𝑡𝑞)2 
(5.1) 

for i = (p,q), xi the latitude of the extreme value, yi its longitude, ti its temporal coordinate, 

and a and b two scaling parameters. The ratio  𝑟 = 𝑎 𝑏⁄  is the parameter controlling the 

relationship between spatial distance and temporal lag. The following parameter values 

are chosen: a = 4.0 deg-1 and b = 1.0 h-1, and therefore r = 4.0 h deg-1, meaning that a 

distance of 0.25° in space is weighted similarly to a distance of 1.0 h in time (Figure 5.6). 

This allows a normalized three-dimensional space-time cube-data structure as displayed 

in Figure 5.6. Each point is spaced out by a distance of 1.0 [various units] in each 

dimension (longitude, latitude, time). Nevertheless, even if each point is equally spaced 

in term of longitude and latitude, this is not the case in term of geographical distance.  
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Figure 5.6: Space-time cube as used in the CHCI methodology. The three small red dots represent extreme 

values. Each cube is latitude 0.25°  longitude 0.25° × time period 1.0 h. 

(ii) Second parameter: the density threshold μ. This parameter represents the number of 

neighbours a point needs to have to be considered a core point, and therefore generates a 

new cluster. This value needs  μ > 4 points in our dataset (number of dimensions plus 

one). However, the detection of intense small scale events (e.g., Bracknell storm, 2000) 

is not intended here because of the relatively coarse resolution of ERA5 and its tendency 

to smooth local extremes. The aim remains to detect different meteorological events of 

varying size. Small scale and short duration extreme precipitation and/or wind events in 

Great Britain are often associated with convective events (See Chapter 3). The size of 

such events varies from hundreds of km2  to tens of thousands of km2 (Chazette et al., 

2016; Rigo et al., 2019), while their duration goes from hours to days (Chapter 3). 

Knowing that the area of the cells in the study area ranges between 400 and 520 km2, it 

was decided to take a density threshold μ = 10 points, meaning that the smallest events 

captured should last from 1 to 10 hours, cover an area between 5200 and 400 km2 while 

being composed of at least 10 extreme values. 

 

(iii) Third parameter: neighbour parameter ε. This is the radius ε in which μ points should be 

included to create a cluster. We would like the radius to include at least two neighbours 

in time and two neighbours in space, as shown in Figure 5.6, meaning ε > 2 (unitless). 

To select a relevant radius for the data, the points’ k–NN distances are plotted (i.e., the 

distance to the kth nearest neighbour) in increasing order, to look for a knee in the plot 

(Hahsler et al., 2017). The idea behind this practice is to differentiate neighbours from 

noise within the whole dataset. Figure 5.7 displays the 10th nearest neighbour distance 
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increasing order. The knee in the plot is identified around ε = 2.24 for extreme wind gust 

and ε = 2.45 for extreme precipitation values.  

 

Figure 5.7: Sorted Euclidean distance to the 10th nearest neighbour (10-NN) for sampled hourly wind and 

rainfall extreme values over Great Britain for the period 1979–2019. (a) Extreme wind events and (b) extreme 

rainfall events. The dotted lines represent the knee of the distribution (ε). This value is the neighbouring 

parameter of the DBSCAN algorithm. 

The spatiotemporal space is discretized in a space-time cube (Figure 5.6). Each grid point 

(representing one grid cell of input data) is spaced by a unit distance in each direction (longitude, 

latitude, time), with a unit distance representing 0.25° in both spatial dimension and one hour in 

time. The density threshold (μ) is fixed at μ = 10 points. With these two parameters, a k Nearest 

Neighbour (k–NN) search is performed, with k = μ =10 points. As a result, a distance matrix 

containing the distance of each point to its 10–NN is created. From the matrix, neighbour 

parameters are fixed at ε = 2.24 for extreme wind and ε = 2.45 for extreme precipitation values. 

Neighbour parameters allow to estimate the spatiotemporal neighbourhood in which the 10–NN 

needs to be for a point to become a core point. This neighbourhood is highlighted in Figure 5.8, 

showing that the 10–NN neighbourhood includes 44 points with a maximum temporal distance 

of two hours and a maximum spatial distance of 0.5° in latitude or longitude. The sensitivity of 
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the clustering procedure to the threshold selected to sample extreme events u, the ratio r of the 

spatiotemporal scaling parameter a and to the density threshold μ is assessed in Appendix G. 

  

 

Figure 5.8: reachable distance in the spatiotemporal space used in this study. The arrow represents time steps 

and each node is a potential spot for an extreme value. The red point represents extreme value. To be neighbours, 

other extreme values need to be within the space delimited by the purple line. For a new cluster to be created, 

an extreme value needs to have at least 10 (out of 44 possibilities) extreme value neighbours. 

 Compound hazard events 

One commonly used option to study compound extremes is to sample only the joint extreme 

events (i.e., extreme wind and extreme rain at a given location and time) (Martius et al., 2016; 

Tencer et al., 2016; Sutanto et al., 2020). When it comes to the spatial and temporal characteristics 

of compound extremes, this option has weaknesses that the present approach aims to overcome. 

The weaknesses include: (i) It highly relies on the spatial and temporal resolution of the input 

data in the definition of “compound”; (ii) It cannot consider the lag time between different 

extremes. (iii) It fails to decipher the spatial structure of extreme events.  

 

Here, hazards events are created for both extreme precipitations and extreme wind gusts; 

compound hazard events are detected by matching extreme precipitation and extreme wind gust 

events in time and space. The hazard event’s footprint is the total area where the hazard occurred 

during the whole duration of the event. To define the spatial and temporal scales of compound 

hazard events, one can look at the overlap in time (t) and space (S) of hazard events. This overlap 

can be the intersection AND (𝑡𝑤∩𝑟, 𝑆𝑤∩𝑟) or the union OR (𝑡𝑤∪𝑟, 𝑆𝑤∪𝑟) of two hazard events in 

space and time. There are, therefore, four different possible definitions of a compound hazard 

event in space and time depending on the definition chosen for the overlap in space and time, as 

displayed in Figure 5.9. The extent of the compound hazard event footprint widely varies 

depending on which combination of spatial and temporal overlap is retained. One can consider 

the following:  

a) The duration of a compound hazard event can either be defined as the time during which 

both hazards occur (AND) or as the aggregated duration of both hazards (OR). As the 

potential impact caused by a hazard can remain after the occurrence of this hazard (e.g., 

fallen trees blocking a road), the temporal scale of a compound hazard is then defined as 

the aggregated duration (𝑡w∪r) of both hazard. 
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iii) Footprints from different hazards need to overlap at least at one point to create a 

compound hazard event. The spatial scale of compound hazards is defined here as the 

intersection (𝑆w∩r) of the spatial footprint of the two hazards. 

 

An overlap of the two hazards' footprint does not mean that the two hazards occur in the 

overlapping area at the same time (here same hour), but that the two hazards occurred, during at 

least 1.0 h each, in that area during the same compound hazard event. This approach overcomes 

the weaknesses mentioned above of a joint occurrence sampling method without introducing a 

lag time (Klerk et al., 2015; Iordanidou et al., 2016). The time window in which a compound 

event can occur is flexible and fixed by the duration of both hazard events.  

 

 

Figure 5.9: Different spatial and temporal scales considered in this study to define compound hazard events, 

with each case representing a combination of spatial and temporal overlap. (a) spatial AND with temporal OR, 

(b) spatial AND with temporal AND, (c) spatial OR with temporal OR, and (d) spatial OR with temporal AND. 

Hazard A is in orange, hazard B in purple, compound hazard in blue and parts of footprints outside the temporal 

boundaries are in grey. The definition retained for the rest of the study is highlighted with a red frame (a). 

 

I define here a compound hazard event footprint (Figure 5.9a) as the intersecting area (AND) on 

which two (or more) hazards develop during the aggregated union of the time periods (OR) of the 

two hazard events. From this definition and illustration in Figure 5.9a, the spatial (S) and 
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temporal (t) scales of a compound (“Comp”) hazard event that includes wind (w) and rain (r) 

events are defined as follow: 

 

𝑡𝐶𝑜𝑚𝑝  = 𝑡𝑤∪𝑟 =  𝑡 𝑤 + 𝑡𝑟 − 𝑡𝑤∩𝑟 

𝑆𝐶𝑜𝑚𝑝  = 𝑆𝑤∩𝑟 =  𝑆 𝑤 + 𝑆𝑟 −  𝑆𝑤∪𝑟  
(5.2) 

With tcomp, tw, tr the duration of the compound hazard event, wind event and rain event respectively 

and Scomp, Sw, Sr the area of the compound hazard event, wind event and rain event respectively. 

The duration of a compound hazard event corresponds to the union of the durations of both hazard 

events involved meaning that 𝑡𝐶𝑜𝑚𝑝 ≥  𝑚𝑎𝑥(𝑡 𝑤 , 𝑡𝑟 ). This piece of work examine compound 

wind-rain events; however, this definition aims to be applicable for other compound hazards (e.g., 

extreme hot temperature and drought).  

 Results 

Each hazard cluster created is characterized by a set of attributes. Similarly to Visser-Quinn et al. 

(2019), three attributes (or metrics) were developed : (i) intensity attributes, (ii) spatiotemporal 

attributes (iii) historical attributes as follows:  

(iv) Intensity attributes. To represent the intensity/magnitude of a rain event, the maximum 

rain accumulation in mm (ra) in a grid cell over the duration of an event was used. Here, 

the rain accumulation represents the total amount of rain, including also timesteps when 

the rain value is inferior to the 99th percentile threshold. The intensity of a wind event is 

expressed by the maximum wind gust during the event in m s-1. In this research, this is 

called the value wind accumulation (wa).  

(v) Spatiotemporal attributes. The spatial extent is measured in the number of spatial cells 

(0.25 × 0.25) with at least one extreme value during the event. The temporal extended (or 

duration) is measured in hours. The spatiotemporal scale represents the number of 

extreme spatiotemporal values (points) in the hazard event.  

(vi) Historical attributes. These attributes include the start and end date of an event, its season 

(i.e., December/January/February [DJF], March/April/May [MAM], June/July/August 

[JJA], September/October/November [SON]) and its year of occurrence from 1979 to 

2019. 

 

Table 5.1 displays the intensity and spatiotemporal attributes and their availability for rain, wind 

and compound clusters.  
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Table 5.1: Intensity and spatiotemporal attributes of hazard events and their availability for wind, rain and 

compound hazard events in the present study 

  Attribute Wind events Rain events Compound wind-rain events 

Intensity 

ra (mm) 
 

✔ ✔ 

wa (m s-1) ✔ 
 

✔ 

Scales 

Spatial footprint (%) ✔ ✔ ✔ 

Duration (h) ✔ ✔ ✔ 

Historical 

Start time (h) ✔ ✔ ✔ 

End time (h) ✔ ✔ ✔ 

 

From these attributes (Table 5.1), the hazard clusters created are confronted with a catalogue of 

157 observed significant events that occurred in the study area. This confrontation highlights the 

capabilities of the method but also of the ERA5 reanalysis to catch different types of extreme 

events in Great Britain (Section 5.4.1).  

 Event identification: Confrontation with major events 

To assess the capacity of our method to identify hazard events, natural hazard clusters are 

confronted to a set of past extreme wind and extreme precipitation events that impacted Great 

Britain. To do so, a catalogue of 157 major hazard events that occurred between January 1989 

and September 2019 is created (See Appendix I). The 157 major events selected aim to be 

representative of the broad range of events, including extreme rainfall and/or extreme wind 

occurring in Great Britain. The construction of the catalogue is done using four primary sources:  

i. Philip Eden: British Weather disasters (1901-2008). A book containing a chronology of 

severe weather events in the UK.  

ii. Dartmouth Flood Observatory: Global Active Archive of Large Flood Events (1985-

Present). An archive of flood events derived from news, governmental, instrumental, and 

remote sensing sources. 

iii. CRED: EM-DAT (1984-2020). A record of disasters maintained by the Centre for 

Research on the Epidemiology of Disasters (CRED, 2018). 

iv. Met Office: Past weather events website (1990-2020). Archive of reports on past weather 

events from the UK Met Office. 

 

As these sources do not focus exclusively on extreme precipitation and extreme wind events, the 

catalogue's creation involves a pre-selection based on the relevance of the event to the study. For 

example, extreme rainfall events associated with flooding with a duration larger than 10 days are 

not retained as these events cannot be associated with one specific extreme rainfall cluster. The 

four sources are used to identify events timing, their location and their duration. Duration is 

expressed in days, while the location of the events corresponds to the 11 NUTS 1 regions of Great 
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Britain as follows: North East (England), North West (England), Yorkshire and The Humber, East 

Midlands (England), West Midlands (England), East of England, London, South East (England), 

South West (England), Wales and Scotland. An event can occur over 1 or more regions (see 

Figure 5.10). Events in the catalogue (Appendix I) are also characterized by their dominant 

hazards (the primary hazard reported in the sources). Events are therefore divided into two 

categories: rain events (R) and wind events (W), depending on their dominant hazard. Some 

significant events also include associated hazards (e.g., landslides) when reported in the sources. 

The catalogue contains 96 extreme precipitation events and 61 extreme wind events. Figure 5.10 

shows the date and locations of occurrences of the 157 major events in the catalogue. Rain and 

wind events are displayed with blue circles and orange crosses. Moreover, the 83 events identified 

as compound hazard events by the CHCI method are highlighted with green crosses in circles. 

 

 

Figure 5.10: Timeline of the 157 major events in the catalogue used to assess the detection abilities of the CHCI 

method of the 11 NUTS1 regions of Great Britain. Major events are considered as “rain” (blue circles) or “wind” 

(orange crosses) events. Events that are identified as compound hazard events by the CHCI method are 

highlighted with green rectangles.  

In Figure 5.10, the interconnections between areas impacted by the same events can be observed 

(e.g., January 2010 rain event) and the clustering of events in time. Some regions are also more 

represented than others in the catalogue. The number of events per regions is displayed in Figure 

5.11a, with South-West England and Wales being the regions with the most events and North-

East and East England being the regions with the fewer events. The date and locations of the 157 

events are used to assess the CHCI clustering method's ability to capture extreme wind or extreme 

rainfall events. For each past major event, a temporal and spatial match is performed to identify 

the corresponding cluster(s). The hit rate (ratio between the number of events with corresponding 

clusters and the total number of events) is used to assess the capacity of the CHCI method. Over 

Great Britain, 147 out of 157 (hit rate = 93.4%) significant events have one or more corresponding 
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hazard cluster(s). Among these 147 events, 64 (43.5%) have one corresponding cluster. The 

percentage of detected events for each NUTS1 region varies between 91.7% (South-East England) 

and 100% (North-West England, North-East England) and is displayed in Figure 5.11b. 

 

 

Figure 5.11: Maps of Great Britain divided into 11 NUTS1 regions showing: (a) the number of events per region 

from the catalogue and (b) the hit rate (ratio between the number of joint events and the total number of events) 

for each region 

The relatively high hit rate provides confidence in the ability of the method to identify extreme 

events. However, for more than 50% of the historical events, there is more than one associated 

cluster, meaning that the method detected several hazard clusters associated with an event. The 

average number of clusters detected per event (for events with corresponding clusters) is 2.5. Here 

detected clusters are confronted to observed events. As the method presented in Section 5.3 highly 

relies on the quality and accuracy of input data, it was decided not to compare intensity attributes 

with observations. Nevertheless, the hit rate for extreme precipitation events of the CHCI method 

with ERA5 hourly data (92.7%) is higher than the one observed in other studies over parts of 

Europe which is around 50% for ERA5 daily extremes (Hu and Franzke, 2020; Rivoire et al., 

2021) without clustering. This suggests that the use of this approach with hourly data might more 

accurately detect observed extreme events, although more studies are required to confirm this 

result. 

 Spatial and temporal properties compound wind-rain events in Great Britain 

Over the period 1979–2019, a total of 18,086 rainfall clusters and 6190 wind clusters are detected. 

Despite suggesting that rainfall events are on average smaller and shorter than wind events, this 

also highlights the capacities of our approach to adapt to different input data. A total of 4555 

compound hazard clusters as defined in Section 3 are detected over the period. These 4555 
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compound hazard clusters are composed of 3565 rainfall clusters (20% of total) and 2913 wind 

clusters (47% of total). Some extreme rainfall or extreme wind clusters are parts of more than one 

compound cluster. For example, an extra-tropical cyclone bringing extreme rainfall scattered in 

space and time can be represented by several clusters and/or one single extreme wind cluster.  

 

In this section, different characteristics of the 4555 compound hazard clusters are extracted and 

analysed. The fraction of compound clusters among wind and rain clusters is investigated in space 

(Figure 5.12) and time (Figure 5.15). The strength of the spatiotemporal dependence between 

rain clusters and wind clusters is assessed through the Likelihood Multiplication Factor (LMF) 

(Figure 5.13b). The occurrence frequency of compound wind-rain over Great Britain is 

estimated, allowing the identification of compound wind-rain hotspots (Figure 5.13a). The 

seasonality of wind, rain and compound hazard clusters is analysed in Figure 5.14 and Figure 

5.15. 

 

Over the study area, the proportion of compound wind-rain clusters among the rainfall clusters 

detected is 20%, while 47% of the wind clusters are compound hazards clusters. However, this 

proportion is variable across Great Britain. Figure 5.12 displays the fraction of compound hazard 

clusters among (a) wind clusters and (b) rain clusters. It highlights the spatial variability of 

compound event prevalence. Among the geographical features that may influence the frequency 

of compound hazards clusters among rain and wind clusters, orography probably plays an 

important role. The frequency of compound wind-rain clusters is the highest in mountainous 

areas, while lowlands of the west coast have a much lower frequency of compound wind-rain 

clusters among both rain and wind clusters. Duration of compound wind-rain clusters varies from 

3 hours to 4 days and spatial footprints range from one grid cell, which represents less than 0.1% 

of the study area to 89% of the study area. However, compound wind-rain clusters are more 

prevalent among the most intense hazard clusters. The latter represents 58 of the 100 most intense 

rain clusters and 95 of the 100 most intense wind clusters. The intensity of rain and wind clusters 

is assessed with the intensity attributes presented in Table 5.1. The proportion of compound wind-

rain clusters also increase with duration and footprint for both rain and wind clusters (Appendix 

H).  
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Figure 5.12: Compound hazard (wind-rain) clusters fractions among (a) wind clusters and (b) precipitation 

clusters during the period 1979–2019 in Great Britain. Data from ERA5 (Hersbach et al., 2020). 

As the duration of compound wind-rain clusters highly varies, their frequency of occurrence in 

the study area is assessed by counting the number of hours in a compound event (as defined in 

Section 5.3.3) at each grid cell. The average number of hours per year in a compound event over 

the period 1979–2019 is displayed in Figure 5.13a. This value varies between 20 and 95 hours in 

the study area. Figure 5.13a highlights areas that are more likely to be affected by compound 

wind-rain clusters with hotspots in mountainous area (as for Figure 5.12). Nevertheless, the 

south-east coast of Great Britain is the primary hotspot for compound wind-rain clusters. The 

frequency of compound clusters gradually decreases eastward from Cornwall and Wales toward 

Anglia and East Midlands, showing a west-east decreasing gradient across all of Great Britain. A 

similar pattern has been found for extreme precipitation (Blenkinsop et al., 2017) and compound 

flooding (Hendry et al., 2019). The prevailing direction of cyclonic weather systems and 

orography partly explains this pattern for compound wind-rain clusters (Hulme and Barrow, 

1997). 

 

The dependence between extreme wind and extreme rainfall (w,r) can influence the estimation of 

the joint return period. The influence of the dependence between extreme wind and extreme 

rainfall cluster occurrence is quantified using the likelihood multiplication factor (LMF) 

(Zscheischler and Seneviratne 2017). The LMF is the ratio between the joint return period 

considering the two variables dependent (Tdep) and independent (Tind) of each other (Manning et 

al., 2019): 

a b 
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𝐿𝑀𝐹 =  
𝑇𝑖𝑛𝑑

𝑇𝑑𝑒𝑝
 (5.3) 

 

The likelihood multiplication factor (LMF) quantifies here the influence of the dependence 

between wind clusters and rain clusters on the estimation of the frequency of compound wind-

rain clusters (Figure 5.13a). The LMF (Figure 5.13b) shows the strength of the dependence 

between wind and rain clusters. The LMF > 1.0 in all parts of the study area, suggesting that rain 

and wind clusters do not occur independently. The LMF is particularly high along the south coast 

of Great Britain, in the British Channel and North West France. While occurrences of compound 

wind-rain clusters exhibit an East–West pattern, the strength of the dependence between wind and 

rain hazard clusters has a South–North pattern.  

 

Figure 5.13: Hotspots for compound wind-rain clusters in Great Britain. Showing (a) the average number of 

hours in a compound hazards event in a year during the period 1979–2019 and (b) the likelihood multiplication 

factor (LMF) that quantifies the influence of the dependence between wind and rain event on the estimation of 

the probability of occurrence of compound hazards clusters. Data from ERA5 (Hersbach et al., 2020). 

The spatial features of compound wind-rain clusters have been identified in Figure 5.12 and 

Figure 5.13. Spatial disparities in their frequency and in the dependence between wind and rain 

clusters have been highlighted. These features also vary in time and with seasons. To look at the 

seasonality of single (wind only, rain only) and compound hazard clusters, all hazard clusters 

have been taken into account and divided into three categories: wind, rain and compound. Wind 

clusters that are part of a compound cluster (N=2913) are removed from the category “wind”, 

while rain clusters that are part of a compound cluster are removed from the category “rain” 

(N=3565). Monthly occurrences of these three categories of clusters are displayed in Figure 5.14. 
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While occurrences of wind and compound clusters are correlated, with a high season in extended 

winter (October to March) and a low season in the extended summer (April to September), rain 

clusters occurrence is following an opposite pattern with a high season in AMJJAS and a low 

season in ONDJFM. Around 82% of all recorded compound hazard clusters occur during the 

extended winter. 

 

Figure 5.14: Boxplots of the monthly number of wind (dark orange), rain (blue), and compound (green) hazard 

clusters in Great Britain over the period 1979–2019. Background colours represent the two seasons. Data from 

ERA5 (Hersbach et al., 2020). 

Figure 5.15 provides a slightly different perspective on the seasonality of compound wind-rain 

clusters. It displays the proportion of compound wind-rain clusters among all clusters. This 

proportion shows a seasonal pattern similar to the one observed in Figure 5.15. This suggests that 

extreme rainfall and extreme wind clusters are more likely to co-occur during the extended winter. 

One possible explanation is that conditions leading to compound wind-rain clusters are occurring 

during the extended winter (Hillier et al., 2020). This season coincides with the extratropical 

cyclones season in western Europe (Mailier et al., 2006; Ulbrich et al., 2009; Deroche et al., 

2014). Extra-tropical cyclone can bring several hazards, including strong wind, storm surge, 

heavy rainfall and high waves (Chapter 3). The influence of cyclonic weather systems coming 

from the Atlantic on compound wind-rain clusters was already suggested by Figure 5.13a and 

highlighted in previous research (Hawcroft et al., 2012; Dowdy and Catto, 2017). However, this 

does not mean that every compound hazard event occurring during the extended winter is an 

extratropical cyclone but suggests that such weather systems are drivers of compound wind-rain 

events.  
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Figure 5.15: Monthly fraction of compound hazards clusters among the total number of clusters 

(wind+rain+compound) for 1979–2019 over the study area (Figure 5.2). Each tile represents a month-year, 

darker tiles meaning that the fraction of compound hazards clusters is greater. 

Different spatial and temporal features of single and compound hazards clusters detected through 

the spatiotemporal clustering method presented in Section 5.3 have been studied. The proportion 

of compound hazards clusters among rain and wind clusters shows regional disparities in Great 

Britain, with orography playing an important role. Western parts of Great Britain are more prone 

to experience compound wind-rain clusters, while the areas where the association between rain 

and wind event is the strongest are located on the South coast. Similarly to wind clusters, 

compound wind-rain clusters mainly occur during an extended winter season. The compound 

hazard high season coincides with the extratropical cyclone season, suggesting that the latter is a 

driver for compound wind-rain hazards in Great Britain. The subsample of clusters occurring in 

the extended summer season display a different pattern compared to the whole population of 

clusters (Appendix H), highlighting that compound wind-rain clusters have multiple drivers. The 

strength of association between wind clusters and rain clusters have been demonstrated in space 

and time; however, the intensities of the hazards also play a role when it comes to impact (Merz 

et al., 2020). From the 4555 compound hazards that occurred 1979–2019, only a few led to 

considerable damages (e.g., Great Storm of 1987, Storm Desmond). The intensity of compound 

wind-rain clusters and their relationships with duration and spatial footprint are discussed in the 

next section.  
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 Discussion 

Assessing the characteristics of compound hazards events in space and time brings valuable 

insight into the nature of the relationship between the hazards involved in the event. It overcomes 

the main limitations of compound hazards studies which focus on interrelations at specific sites 

(Sadegh et al., 2018). However, spatiotemporal analysis of compound hazards brings its own set 

of uncertainties and limitations. This section will discuss the following four main limitations 

arising from the presented study:  

− parameters influencing the clustering procedure,  

− the subjective definition of compound hazards events in space and time, 

− uncertainties around the estimation of attributes and input data 

 

Parameters influencing the clustering procedure. Three main parameters are influencing the 

clustering process and consequent results; their influence is discussed further and quantified in 

Appendix G. 

(vii) The threshold (u) selected to sample extreme values. This study is based on the 

assumption that an extreme enough occurrence of an environmental variable can be used 

as a proxy for natural hazard identification. A threshold is then set to sample the extreme 

occurrence of environmental variables. Even if this threshold has been selected in light 

of previous works on wind and rain extremes (Ulbrich et al., 2009; Martius et al., 2016), 

its value remains subjective. A seasonal threshold could also have been used to detect 

more clusters during the extended summer. The value of the threshold directly influences 

the number of extreme clusters sampled and, therefore, on the selection of the other 

clustering parameters (Appendix G).  

(viii) The ratio r of the spatiotemporal scaling parameters a and b. A three-dimensional 

Euclidean distance is used as a distance measure for the clustering procedure. The value 

of the distance between each extreme event is controlled by the importance given to 

spatial (longitude and latitude) and temporal (time) component in the input data. Here, 

each component was set to have the same importance in the distance computation, but 

more importance could be given to the time (or space) component depending on a prior 

assumption (Zscheischler et al., 2013; Vogel et al., 2020). 

(ix) The density threshold μ. While the neighbouring parameter ε is set in a systematic manner 

(Section 5.3.2), its value depends on the density threshold, which gives the minimum 

number of detected values per cluster. The selection of μ is based on a prior assumption 

about the minimum size a compound hazard event can have in the study context. 

 

The subjective definition of compound hazards events in space and time. Section 5.3.3 presented 

four different possible definitions for a compound hazards event in time and space. It was chosen 
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to define the duration as the aggregated duration of all hazard events; however, one could be more 

interested in extracting the simultaneous duration of both hazards. 

 

Biases and uncertainties around the estimation of attributes. There are biases and uncertainties 

around the values of intensity attributes of the clusters. These biases are partly due to the nature 

of the data used in this study: climate reanalysis data (Section 2). Higher uncertainty arises from 

the estimation of rain accumulation as precipitation observations are not assimilated in ERA5 

over the study area. For a better estimate of precipitation extremes, gridded observation-based 

data sets (e.g., E-OBS) are generally closer to observed daily precipitation extremes than 

reanalysis data sets (Hu and Franzke, 2020). Biases might also be more pronounced over 

mountainous areas for both wind and precipitation extremes (Skok et al., 2016; Sharifi et al., 

2019; Zscheischler et al., 2021) which are more exposed to compound wind and precipitation 

clusters (Figure 5.13). The size of the study area also leads to some events being detected only 

partially which could bias our estimates of size and duration of events. 

 

 Conclusion 

This study aims to characterize more accurately the spatiotemporal aspects of the interrelationship 

between extreme rainfall and extreme wind events in Great Britain. By clustering extreme 

occurrences of maximum hourly wind gust and hourly precipitation from ERA5, 4555 compound 

wind-rain clusters over Great Britain were identified for 1979–2019. To assess the approach's 

ability to identify the occurrence of extreme events in time and space, a catalogue of 157 extreme 

precipitation and/or extreme wind events that occurred in Great Britain over the period 1979-2019 

was created. The confrontation was done at a regional (11 NUTS1 regions) and daily scale. The 

average hit rate (the ratio between the number of identified events and the total number of events) 

over the whole area is 93.7%, meaning that our approach successfully identifies most extreme 

rainfall and wind events. According to our methodology, 53% of the hazard events among the 

157 of the catalogue were compound events (wind-rain). Occurrences of wind and rain events are 

found to be dependent, with significant spatial and seasonal variabilities. The main hotspots for 

compound hazards clusters are the South coast of England and mountainous areas. A low 

(AMJJAS) and a high (ONDJFM) season were identified for compound hazard clusters and 

outline a link with extratropical cyclone season. 

 

One important limitation of this approach is its reliance on the input data. To estimate with more 

accuracy intensity attributes (particularly for precipitation), one would require to use a statistical 

correction of the simulated precipitation (Widmann and Bretherton, 2000) or other gridded 

datasets based on observations (e.g., E-OBS). However, reanalysis data have potential to study 
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compound hazard events on a global scale as they offer homogenised values for a significant 

number of variables. This approach can be transposed to the analysis of other compound events 

such as compound hot and dry events (Sutanto et al., 2020), compound cold and snow events 

(Hillier et al., 2020). The definition of compound hazard in time and space as proposed in this 

piece of work also stands for more than two hazards, allowing potential extension to more 

complex compound events (e.g., compound hot-dry event with extreme wind, extreme heat, 

drought and wildfires).  

 

Nevertheless, many spatiotemporal aspects of compound hazards events have not been analysed 

in the present work. For example, the temporal sequencing of hazards within compound hazard 

events has not been explored. It has been shown that extratropical cyclones can occur in sequences 

(Mailier et al., 2006). A way forward could be to use clusters created in this study to identify 

sequences of single and compound hazard events. To go further, the influence of climate change 

on the frequency, duration and magnitude of compound hazards could be assessed using climate 

projection
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Chapter 6: Summary, conclusions and future 

research directions 

 Introduction 

As introduced in Chapter 1 and revisited throughout the thesis, hazard interrelations can play a 

decisive role in hazard probability, which is a component of risk. The interest around hazard 

interrelations has been growing over the past twenty years in different scientific disciplines (e.g., 

Kameshwar and Padgett, 2014; Xu et al., 2014; Sadegh et al., 2018) and industrial sectors (Matos 

et al., 2015; Ciurean et al., 2018; Narsis, 2020). Different intergovernmental organisations and 

frameworks have emphasised the need for multi-hazard approaches (UNDRR, IPCC). This work 

sits at the intersection between environmental sciences, engineering and disaster risk reduction.  

 

However, adopting a multi-hazard approach implies rethinking several components of risk and 

hazards analysis. A quantitative multi-hazard approach requires developing new measures (e.g., 

multivariate return period) and modelling methods. It also opens new challenges linked to 

physical drivers leading to such events, interaction mechanisms, spatial dependencies, cascading 

effects. This doctoral research tackled some of these challenges. It aimed to develop a framework 

for a quantitative multi-hazard approach building on the latest developments in geomorphology, 

hydrology, climate science, engineering and statistics. In this final chapter, I consider the results 

and conclusions of Chapters 2–5 in the context of the original research questions (Section 6.2) 

and discuss future research directions in the extension of this latter (Section 6.3). This chapter 

ends with concluding remarks (Section 6.4).  

 

The rest of this Section 6.1 provides an abbreviated summary of Chapters 2 to 5: 

 

Chapter 2: This chapter develops a framework for quantifying natural hazard interrelations by 

reviewing current research available. Interrelations between 14 natural hazards are classified into 

5 interrelation types. A total of 19 modelling methods to quantify natural hazard interrelationships 

were reviewed, providing a clear view of the state-of-the-art in hazard interrelation modelling. 

Modelling methods were clustered into three broad modelling approaches: stochastic, empirical, 

and mechanistic. The application of each modelling approach to different hazard interrelations 

was discussed with case study examples. 

 

Chapter 3: This chapter builds on the findings of Chapter 2 to assess the regional multi-hazard 

landscape of the European Atlantic Region. A set of 16 natural hazards (12 in common with 

Chapter 2) relevant to the European Atlantic Region (EAR) were selected. To narrow down the 

number of possible multi-hazard scenarios, physical processes (e.g., meteorological features) 
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leading to hazard interrelations were identified to differentiate five groups of interrelated hazards 

named multi-hazard networks. The five multi-hazard networks (Ground movements, Convective 

storms, Extratropical cyclones, Compound dry hazards, Compound cold hazards) were discussed 

and illustrated with a catalogue of 50 events that occurred in the EAR, highlighting dominant 

hazard interrelations and cascades in Western Europe. The 34 freely available numerical datasets 

for hazard interrelation modelling of three types (in-situ observations, remote sensing and model 

output) were reviewed. The availability of the three types of data for the five interrelation 

networks was also assessed. 

 

Chapter 4: This chapter focused on hazard interrelations modelling and aimed to evaluate the 

efficacy of six distinct bivariate extreme models through their fitting capabilities to 60 synthetic 

datasets. The systematic framework developed contrasts model strengths (model flexibility) and 

weaknesses (poorer fits to the data). The benefits of the systematic modelling framework 

developed have been highlighted in the context of the regional multi-hazard landscape of the 

EAR. Two pairs of hazards have been considered with the following environmental data: (i) daily 

precipitation and maximum wind gusts for 1971–2018 in London, UK; (ii) daily mean 

temperature and wildfire numbers for 1980–2005 in Porto district, Portugal. 

 

Chapter 5: This chapter focused on increasing the understanding of spatial and temporal 

components of hazard interrelations in the context of the regional multi-hazard landscape of the 

EAR. The study analysed the spatiotemporal features of compound extreme wind and 

precipitation in Great Britain. Climate reanalysis data (ERA5) during the period 1979–2019 have 

been used. A clustering algorithm has been applied to create clusters of extreme precipitation and 

wind gust. Clusters of extreme precipitation and extreme wind gust were coupled to create 4555 

compound hazard clusters. Spatial distribution of compound wind-rain events was assessed as 

well as their seasonality.  Bivariate extreme modelling was used to quantify the interrelation 

between the two hazards and discuss the relationship between spatiotemporal overlap and the 

strength of the interrelation between hazards. 

 Relationship of the thesis to Original Research Objectives and 

Questions 

In Chapter 1, I set out the aim of this thesis’ research: “to develop a quantitative multi-hazard 

approach by (i) increase the understanding of hazard interrelations (ii) provide tools to quantify 

model natural hazard interrelations that can be useful for energy infrastructures”. Figure 6.1 

synthesizes the main contributions of Chapters 2 to 5 and their interconnections. These 

contributions correspond to each chapter's aims displayed in Figure 1.5 and are linked by their 

colour to the five key aspects of the quantitative multi-hazard approach displayed in Figure 1.4 
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in Chapter 1. Figure 6.1 highlights each chapter’s contributions to research objectives and the 

linkages between concepts, classifications and measures developed in each chapter. I will now 

synthesise the results and conclusions of Chapters 2 to 5 to address the four objectives and 15 

related research questions set to meet our research aims. 

 

 

 

Figure 6.1: Main contributions of each of the four research chapters of the thesis and their associated objectives. 

Contributions are linked by their colour to the five key aspects of the quantitative multi-hazard approach 

displayed in Figure 1.4. Arrows highlight linkages between contributions from different chapters.  
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O1:  Identify and classify approaches to quantify specific hazard interrelations (Ch. 2) 

 

This first objective has mainly been addressed in Chapter 2, which is a critical literature review. 

The identification and classification of approaches to quantify hazard interrelations was the basis 

for the design of Chapter 4, which focuses on assessing the suitability of different models to 

different natural hazard interrelations. This objective has been broken down into four different 

research questions, which are now discussed. 

 

Q1.1: What methods have been used in the literature for quantitative multi-hazard assessment? 

One of the main challenges when adopting a multi-hazard approach is the diversity of natural 

hazards and processes leading to hazard interrelations. A total of 14 different natural hazards were 

considered in Chapter 2 to review methods for quantitative multi-hazard assessments. These 14 

natural hazards were divided into three categories that acknowledge their diversity. The extensive 

literature review performed in Chapter 2 highlighted three different approaches (stochastic, 

empirical, mechanistic) to model interrelations between hazards.  

 

Q1.2: How does one create a classification for natural hazard interrelation models?  

To create a classification for natural hazards interrelations, a critical literature review was 

performed to understand and group the different terminologies gravitating around the concept of 

“multi-hazard” currently used in the literature. This allowed us to identify and relate different 

terms used to designate hazard interrelations in various scientific communities. The different 

terms reviewed often referred to as hazard interrelation mechanisms. Based on this terminology 

and previous research on multi-hazard (e.g., Gill and Malamud, 2014; Decker and Brinkman, 

2015), a new classification of natural hazard interrelation types has been designed. To create a 

classification for natural hazard interrelation models, two databases have been created 

(Appendicies A and B) offering evidence for (i) hazard interrelation occurrence, (ii) hazard 

interrelation classification and (iii) use of models to quantify hazard interrelations.  

 

Q1.3: How to model quantitively the relationship within different natural hazards pairs? 

As discussed under Q1.1 above, approaches to model hazard interrelations have been reviewed in 

Chapter 2. Two hazard interrelation matrices were designed, one for cascading hazards and one 

for compound hazards. Interrelations between the 14 natural hazards considered in Chapter 2 

have been mapped on these two matrices along with relevant modelling approaches (when 

possible). A total of 19 modelling methods distributed into the three modelling approaches were 

reviewed, their popularity analysed, and examples provided. Using the Hazards Interrelations 

Database (Appendix B), the relevance of the three modelling approaches depending on the 

interrelation type (triggering, change condition, compound) were discussed. As a result, it was 

found that stochastic approaches have mostly been used to model compound interrelations, 
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mechanistic models are more popular to model triggering interrelations and empirical models 

were mainly used for triggering and compound interrelations.  

 

Q1.4: What model is the most suitable for a given natural hazard interrelation? 

Based on the finding of Chapter 2, Chapter 4 focused on one modelling approach: stochastic 

models, as these models have the potential to produce robust extrapolation in the extreme domain. 

In this chapter, 60 different synthetic datasets were generated to assess the relevance of different 

stochastic models for various hazard pairs. The properties of the synthetic datasets (marginal 

distributions, tail dependence structure) were chosen to match bivariate time series of 

environmental variables. A methodological framework was produced to determine the most 

suitable model to quantify the interrelation of a given natural hazards pair. The methodology is 

based on the estimation of tail dependence measures and level curves which represents bivariate 

return periods (Chapter 4). From the results of this chapter, I recommended selecting a range of 

models rather than one, although non-parametric and semi-parametric models (conditional 

extremes and joint-tail KDE models) were identified as the most flexible (compared to parametric 

copulas). 

 

O2: Design multi-hazard scenarios for Western Europe (Ch. 3) 

This Objective 2 was the main driver for Chapter 3, which adapts some of the findings of 

Chapter 2 for use in regional settings (European Atlantic Region). While Chapter 2 focused on 

interrelations between two hazards, Chapter 3 examines events including more than two 

interrelated hazards. This research objective was broken down into three research questions which 

are now discussed.  

 

Q2.1: How to select relevant natural hazards and hazards interrelations for a given region?  

In Chapters 2 and 3, relevant natural hazards for a given region were selected based on past 

disaster occurrences. The disaster database EM-DAT as well as publications and reports about 

single hazards in Europe were used to retrieve past occurrences of natural hazards and disasters. 

There are several criteria for a disaster to be included in the dataset, including ≥ 10 people who 

died or ≥100 people affected or declaration of a state of emergency or a call for international 

assistance (CRED, 2018). Depending on the region of interest (whole Europe in Chapter 2 and 

western Europe in Chapter 3), natural hazards selected with this approach slightly differ. The 

methodology used in Chapter 3 to identify relevant hazard interrelations is also based on previous 

occurrences of natural hazards. It provides tools for the industry to prioritize which hazard 

interrelations to analyse and can be adapted depending on the assets.   
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Q2.2: Which hazards are more likely to occur within the same multi-hazard event? 

Chapter 2, similarly to previous reviews on multi-hazards (Gill and Malamud, 2014), mainly 

focused on interrelations between pairs of hazards. One limitation of such an approach is that 

multi-hazard often encompasses more than two hazards. For the set of 14 hazards considered in 

Chapter 2, there are 196 possible pairs of natural hazards, 2,744 triples of natural hazards, 38,416 

quadruplets and so on. To reduce the complexity arising from the multiplication of potential 

interrelations, the 16 natural hazards considered in Chapter 3 were assorted in five multi-hazard 

networks (ground movements, convective storms, extratropical cyclones, compound dry hazards 

and compound cold hazards). These networks were designed based on (i) interrelation matrices 

developed in Chapter 2; (ii) hydrometeorological drivers, (iii) geophysical drivers. The 

development of multi-hazard networks allows focusing on a restricted number of hazard 

interrelations.  

 

Q2.3: Which natural hazards interrelations should be studied in priority? 

This is a question that is frequently asked by engineers when discussing hazard interrelations, and 

a very complex one to answer. The answer also varies depending on the location and on the 

vulnerability of the concerned infrastructure, city or settlement. Nevertheless, the design of multi-

hazard networks in Chapter 3 already provides evidence to focus on a particular set of hazard 

interrelations. A multi-hazard events catalogue containing 10 major multi-hazard events per 

network was produced and is available in Appendix C. Besides offering empirical justifications 

to the concept of a multi-hazard network, the catalogue was used to assess the importance of 

natural hazard within the five multi-hazard events. Dominant natural hazard(s) and natural hazard 

interrelation(s) for each multi-hazard events were identified. This work provides indicators to 

prioritize the study of hazard interrelations. For example, the interrelation between extreme 

precipitation and extreme wind occurs in two networks (convective storm and extratropical 

cyclone) and is dominant within extratropical cyclones. It was therefore analysed in Chapter 4 

and 5.  

 

O3: Apply quantitative models to diverse hazard interrelations (Ch. 4) 

After reviewing modelling methods to quantify hazard interrelations and analysing mechanisms 

behind these hazard interrelations, another main objective of this doctoral research was to apply 

some of the reviewed methods to different types of hazard interrelations. It was decided to focus 

on stochastic models and in particular bivariate extreme value models as there was a demand from 

engineers to develop a systematic methodology to use such models. Chapter 4 addressed this 

objective by comparing six bivariate extreme models and applying these to two hazard 

interrelations. This research objective was broken up into three research questions which are now 

discussed. 

 



Chapter 6:Summary, conclusions and future research directions 

Page 181 

Q3.1: How to systematically select the most suitable model for a given hazard interrelation? 

In Chapter 2, 19 modelling methods and their previous applications to 24 hazard interrelations 

were reviewed. From the reviewed literature, stochastic models appear more suitable for 

compound interrelations, while mechanistic models have mostly been applied to triggering 

interrelations. A common practice to quantify hazard interrelations is to estimate the dependence 

between the two hazards. In that setting, natural hazards are usually represented by environmental 

variables. The use of dependence measures to quantify hazard interrelations is discussed in 

Chapter 2 with an application example. As natural hazard are rare phenomena, tail dependence 

measures are used in Chapter 4 to assess the strength of dependence between two natural hazards.  

Assessing the tail dependence of hazards is a crucial step toward using models to extrapolate 

beyond observed data and therefore estimate attributes of an extreme multi-hazard event. Using 

a model that does not represent the dependence structure of the data can result in over (under) 

estimating the risk associated with hazard interrelations. In Chapter 4, 60 bivariate synthetic 

datasets with properties matching bivariate time series of environmental variables were generated. 

Comparing models on synthetic data enabled the development of a systematic framework to 

choose the most appropriate model for a given hazard interrelation depending on the estimation 

of the tail dependence of the two variables representing the hazards.  

 

Q3.2: How to translate hazard interrelation types into probability types? 

One challenge around using statistical modelling and bivariate extreme models to quantify hazard 

interrelation is to associate different interrelation types to probability types and therefore estimate 

the return level of a combination of hazards. In Chapter 4, different probability types used in the 

literature to estimate the bivariate return period have been reviewed. Two probability types among 

the most popular were selected: (i) the joint exceedance probability which is the probability of 

the two variables being extreme (above a threshold) simultaneously; (ii) the conditional 

probability which is the probability of one variable being extreme knowing the other variable is 

extreme. These two probability types correspond to two interrelation mechanism (compound and 

cascading) associated with the two interrelation matrices presented in Chapter 2. Bivariate 

probability of exceedance are curves, and the shape of these curves drastically changes depending 

on the type of probability selected. It is therefore important to be consistent when associating 

hazard interrelation types with probability types. In Chapter 5, the bivariate return period of 

compound wind-rain events in Great Britain was estimated with a joint exceedance probability 

type, providing a single value to estimate the intensity of a bivariate event. It is also possible to 

extend this approach to other hazard interrelations and interrelations networks using the concepts 

of dominant hazards and dominant hazard interrelations introduced in Chapter 3. 
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Q3.3: What are the different types of numerical data available to study hazard interrelations in 

the EAR? 

In Chapter 3, freely available datasets to quantitatively study the five multi-hazard event groups 

have been reviewed. The 35 datasets reviewed were classified into three main types: (i) in-situ 

observations; (ii) remote sensing; (iii) model outputs. Each type of data presented in Chapter 3 

has its strength and weaknesses. The choice of a dataset is ultimately driven by the availability 

and compatibility of different data types for hazards within a multi-hazard network. Indeed, one 

of the main challenges in multi-hazard studies is to identify data with compatible spatial and 

temporal coverage for different natural hazards. In Chapter 4, the interrelation between extreme 

precipitation and extreme wind gust at Heathrow Airport (UK) was studied. Data for both natural 

hazards were daily in-situ observations, with precipitation data gridded based on in-situ 

observations. The second example assessed the interrelation between extreme air temperature and 

wildfire activity. While both datasets were also in-situ observations, the spatial scale of the two 

datasets was different. The temperature was therefore average over the Porto district, potentially 

leading to biases in the results. In Chapter 5, the interrelation between extreme precipitation and 

extreme wind gust was also studied with gridded model output data, which offered less accuracy 

in term of the local intensity of the hazards but offered the opportunity to analyze the 

spatiotemporal features of the hazard interrelation. 

 

O4: Analyse spatiotemporal features of hazard interrelations with gridded data (Ch. 5) 

When defining hazard interrelations, the idea of two (or more) hazards occurring at the same time 

and place is broadly accepted (IPCC, UNDRR). However, the notions of the same time and place 

are often unclear. This last objective investigates the spatial and temporal aspects of hazards 

interrelation, starting from identifying single hazard events to the definition of hazard 

interrelations in space and time. Spatiotemporal features are key aspects of hazards interrelations. 

This research objective has been divided into four research questions. 

 

Q4.1: How to identify occurrences of natural hazards with climate reanalysis data? 

The spatiotemporal features of the interrelation between extreme precipitation and extreme wind 

gust in Great Britain were analysed in Chapter 5. Based on the review of freely available 

numerical data conducted in Chapter 3, model output data (ERA5) was selected as it provides 

data for both hazards at an hourly timestep with global coverage. A percentile-based approach 

was chosen to identify occurrences of extreme precipitation and extreme wind gust. This approach 

is characterized by an extreme threshold above which precipitation and wind gust are considered 

extreme enough to be hazards. The selected percentile of precipitation and wind gust over the 

period 1979–2019 was computed for each grid cell. By producing a threshold on each grid cell, 

regional and local variations were taken into account in the hazard detection. Nevertheless, 

extreme occurrences of wind and precipitation often occur in areas larger than the size of a grid 
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cell (here 0.25° × 0.25°) and can last more than one hour. Extreme occurrences of each variable 

(above the extreme threshold) were then clustered in space and time to identify hazard footprints. 

Extreme occurrences of wind and rainfall were clustered separately. As a result of the clustering 

procedure, hazard events with variable intensity, duration (from 1 hour to four days), and spatial 

footprint (from thousand to hundreds of thousand square kilometres). 

  

Q4.2: How to define hazard interrelations in space and time?  

As discussed in Chapter 5, there is no unified definition of temporal and spatial components of 

hazard interrelations, and this latter mostly depends on the needs behind the studies. In Chapter 

5, four different spatiotemporal scales of hazard interrelations were proposed based on spatial and 

temporal overlap (Figure 5.9). One of these four definitions was retained to define compound 

hazard events in space and time in Chapter 5. Therefore, a compound hazard event was defined 

as the area where two (or more) hazard occur during the aggregated duration of an event. A 

compound hazard event in space and time is consequently the occurrence of two hazards (in Ch. 

5 extreme precipitation and extreme wind) at the same location(s) (e.g., a set of grid cells) during 

a period lasting between the beginning of the first hazard event and the end of the second hazard 

event.  

 

Q4.3: What is the influence of the intensity of natural hazards on the spatiotemporal features of 

compound hazards? 

An essential feature of natural hazards and extremes is the relationship between duration, spatial 

extent and intensity (Lavell et al., 2012). The influence of the joint intensity of natural hazards on 

the spatiotemporal features of hazard interrelation is therefore also important to assess. In 

Chapter 5, the joint return period of the identified compound hazard events was computed using 

the joint tail KDE model assessed in Chapter 4. Maximum precipitation and wind gust were used 

in Chapter 5 as intensity attributes for each compound hazard event. The joint return periods was 

used as a proxy for the intensity of the compound hazard events. Chapter 5 discussed the 

relationship between the joint return period, finding that most extreme compound hazard events 

(with a return period above 1 year) are on average larger and last longer than less intense 

compound wind-rain events. This suggests that the most intense compound wind and precipitation 

events in Great Britain are large scale events that can occur over whole regions. However, spatial 

and temporal resolutions of the data used (ERA5) are not able to be analysed for very localized 

and short-duration events. Spatial footprint and duration of major compound hazard events 

studied in Chapter 5 also correspond to the footprint and duration of extratropical cyclones 

discussed in Chapter 3. 
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 Contribution to a quantitative multi-hazard framework: 

characterisation and modelling of a hazard interrelation 

As discussed in Section 6.1 and 6.2, this thesis addresses different aspects that the author believes 

essential to move toward a quantitative multi-hazard framework. In this section, the contribution 

to a quantitative multi-hazard framework is highlighted, with a practical guide provided on how 

to use the findings, tools and supplementary materials of the thesis. The contributions of each 

chapter are highlighted in the context of one examples which addresses the assessment and 

quantification of one particular hazard interrelation using tools and recommendations developed 

through the thesis.  

 

This section answers a simple question related to hazard interrelations: What are the 

interrelationships between “hazard A” and “hazard B”? As this thesis has extensively analyzed 

the interrelation between extreme wind and extreme precipitation, these two hazards will be used 

in this example. The characterization of the interrelation between extreme precipitation and 

extreme wind is done using tools, recommendations and resources from this thesis and divided 

into 5 steps: 

• Step 1:Are two hazards interrelated and how are they interrelated? 

• Step 2:What are the possible drivers of interrelation(s) identified? 

• Step 3: What datasets are available for this hazard pair? 

• Step 4: How can one model the interrelation(s) between the two hazards? 

• Step 5:What is the scale of the interrelation(s)? 

 

Step 1:Are two hazards interrelated and how are they interrelated? 

After reading this thesis, the reader might already have some clues to this question “are the two 

hazards interrelated and how are they interrelated?”. To know if two hazards are interrelated, the 

first step would be to determine if these two hazards are part of the hazard interrelation matrices 

developed in Chapter 2 (Table 2.3). If the hazards of interest are in Table 2.3, one can then 

identify whether the two hazards are interrelated (Figure 2.5, Figure 2.6), with which mechanism 

(compound vs cascade) and with which interrelation types (Figure 2.5, Figure 2.6). In the case 

of one or both hazards not being part of Table 2.3, the reader can refer to other studies mentioned 

in Chapter 2 (e.g., Gill and Malamud, 2014). 

 

Step 2:What are the possible drivers of interrelation(s) identified? 

In Chapter 3, 16 natural hazards are grouped into five multi-hazard networks. These multi-hazard 

networks are based on geophysical drivers. If the two hazards of interest are part of a multi-hazard 

network, it means that their hazard interrelation could be associated with other natural hazards of 

the network. Multi-hazard networks and their associated hazards are presented in Figure 3.5, 
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while each network is displayed and discussed in Section 3.3. The interrelations between extreme 

precipitation and extreme wind is part of two multi-hazard networks and is the dominant 

interrelation for extratropical cyclone (meaning it is the most likely interrelation).  

 

Step 3: What datasets are available for this hazard pair? 

Chapter 3 presents three main types of environmental data (in-situ observations, model outputs 

and remote sensing datasets) and comes with a database of free numerical data for quantitative 

multi-hazard approach (Appendix D). This database is composed of 34 freely available datasets 

to study and model the five multi-hazard networks presented in Section 3.3. According to this 

database, the interrelation between extreme precipitation and extreme wind can be modelled with 

in-situ observations (e.g., Hadley Centre observations datasets) or model output (e.g., ERA5) 

datasets. Depending on the requirements of the analysis (local vs. global), the user can favor one 

type of data over others and mix different types of data (e.g., remote sensing for precipitation and 

reanalysis for wind gust). Chapters 4 and 5 offer some insights on problems around data when 

analyzing hazard interrelations. Nonetheless, this thesis does not pretend to fully answer this 

question, but rather highlights the main strength and weaknesses of different types of 

environmental data.  

 

Step 4: How can one model the interrelation(s) between the two hazards? 

This question is central to this thesis and is particularly addressed in Chapters 2 and 4. The 

classification displayed in Figure 2.7 provides an overview of possible modelling approaches 

available to model hazard interrelations. If the two hazards of interest are part of Table 2.3, one 

can refer to Figures 2.5 and 2.6 to know which modelling approach has been used and which 

interrelation mechanism (compound, cascade) correspond to the interrelation of interest. More 

insights on which model to use are available in Appendix B. Chapter 4 focuses on stochastic 

models suitable for bivariate extreme value analysis. It also presents two types of probabilities 

corresponding to two interrelation mechanisms. Figure 4.8 is a heatmap of model abilities for 

different scenarios (bivariate datasets). Section 4.4 develops a tutorial on using the results of 

Chapter 4 with two applications to natural hazards. From Figure 2.6, the interrelations between 

extreme precipitation and extreme wind have been modelled with stochastic and empirical 

models. Three studies in Appendix B analyze this interrelation with a regression, a multivariate 

model and a copula. Chapter 4 and Figure 4.8 allow one to select the most appropriate bivariate 

model to estimate the extremal dependence structure and model extreme bivariate return periods 

of joint wind and precipitation extremes. 

 

Step 5:What is the scale of the interrelation(s)? 

This question is addressed with different approaches in Chapters 3 and 5. In Chapter 3, the 

spatial and temporal scales of 50 historic multi-hazard events are recorded. The catalogue is 
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available in Appendix C. Spatial and temporal scales of each event are displayed in Figure 3.12 

and grouped by network, allowing one to visualize the range of spatial and temporal scale of each 

of the five multi-hazard networks presented in Section 3.3. In Chapter 5, compound wind and 

precipitation extremes are identified by clustering extreme values of wind and precipitation over 

Great Britain using climate reanalysis data. Chapter 5 provides a robust definition of compound 

hazard in space and time. The method developed in Chapter 5 estimates the spatial footprint and 

duration of compound wind and precipitation events and offers a tool to analyze the attributes of 

compound hazard events (Section 5.4.2, Appendix H). The method used in Chapter 5 can be 

applied to other hazard interrelations and other gridded datasets. It can also be extended to more 

than two hazards. 

 

A summary of Steps 1 to 5 given above, their interrelation characteristics, and where in this thesis 

these approaches are described can be found in Table 6.1. The characteristics of the interrelation 

between extreme precipitation and extreme wind are highlighted in blue. 

 

Table 6.1: Summary of the contribution to a quantitative multi-hazard network. Characteristics of the 

interrelation between extreme wind and extreme precipitation are displayed in blue to illustrate the approach. 

Steps  Interrelation characteristics Resources 

S
te

p
 1

 

Interrelation Yes/No Table 2.3;  

Figures 2.5 and 2.6 

Interrelation mechanism Compound/Cascade Section 2.3;  

Figures 2.5 and 2.6 

Interrelation type Compound/Triggering/Change 

condition 

Section 2.2;  

Table 2.1 

Additional information available Yes/No Appendix A 

S
te

p
 2

 

Part of the same MH network Yes/No Table 3.1; Figure 3.4 

MH networks GM/CS/ETC/CD/CC Section 3.3; Table 3.2 

Dominant interrelation Yes/No (ETC) Figure 3.11; Table 3.3 

Examples of past multi-hazard 

events 

Yes/No Appendix C 

S
te

p
 3

 Type of environmental data 

available 

In-situ observation/Remote 

sensing/ Model output 

Figure 3.13;  

Appendix D 

S
te

p
 4

 

Suitable models  Stochastic/Empirical/Mechanistic Figures 2.5, 2.6, 2. 7 

Previous studies of this 

interrelation 

Yes/No; 3 Appendix B 

Probability type for modelling PAND/PCOND Figure 4.4, Table 4.1 
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Steps  Interrelation characteristics Resources 

Most appropriate model for 

bivariate extreme modelling 

Depends on the scatterplot Figures 4.5 and 4.8  

 

S
te

p
 5

 
Qualitative estimate of the 

spatial and temporal scales 

Yes/No Figure 3.12;  

Appendix C 

Spatiotemporal clustering 

applicable 

Requires geospatial data Section 5.3;  

Appendix D 

Quantitative estimate of the 

spatial and temporal scales 

Yes/No Section 5.4.2; 

Appendix H 

 

 Future research directions 

In Chapters 3, 4 and 5 new gaps and ways of going further in the understanding and quantification 

of hazard interrelations were identified. Three future research areas are discussed and illustrated 

in detail here: 

• Expand methodologies developed in Chapters 4 and 5 to interrelations between more than 

two hazards 

• Systematically attribute occurrences of specific natural hazards to a multi-hazard network 

• Adopt event-based storyline approaches 

 Expand methodologies developed in Chapters 4 and 5 to interrelations 

between more than two hazards 

In this thesis, methods to quantify hazard interrelations were reviewed in Chapter 2. This review 

was mainly done in the context of interrelations between two hazards. In Chapter 4, the abilities 

of six bivariate extreme models to model different hazard interrelations were assessed. Bivariate 

models can only model interrelations between two natural hazards. Case studies for two pairs of 

natural hazards were conducted in Chapter 4. The first one was the compound interrelation 

between extreme wind and extreme precipitation in Heathrow Airport (UK) and the second one 

was the change condition interrelation between extreme hot temperature and wildfire activity in 

Porto district (Portugal). In Chapter 5, the spatiotemporal footprint of compound extreme wind 

and precipitation events over Great Britain were analysed. The study area selected was South-

East England. Research directions for the future could be to include other natural hazards in the 

analysis of interrelations.  

 

In Chapter 3, networks were used to visualize the multiple hazard interrelations within multi-

hazard events. The use of such a network is a promising direction to go from hazard pairs to 
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multiple hazards. To use multi-hazard networks as a basis for hazard interrelation modelling, 

methods that can handle multiple interdependencies between variables are required. Copulas 

presented in Chapter 4 suffer from a lack of flexibility in higher dimensions as these require all 

pairs of variables to have the same type of dependence (Brechmann and Schepsmeier, 2013). Two 

methods with the ability to overcome this limitation have increasingly been used in previous years 

to model networks of interrelated hazards or drivers (Weber et al., 2012; Bauer, 2013; Liu et al., 

2015; Bevacqua et al., 2017; Liu et al., 2017): Bayesian network and pair-copula constructions 

These two methods are also topical in current conferences and workshops. Both are now presented 

and discussed. 

6.4.1.1 Multivariate modelling method: Bayesian network 

When dealing with networks of dependence and risk analysis, over the last decade Bayesian 

networks (BNs) have appeared more frequently in the literature, and there is an increasing trend 

towards the use of this type of method (Gutierrez et al., 2011; Duval et al., 2012; Nadim et al., 

2013; Wang et al., 2013; Poelhekke et al., 2016; Sperotto et al., 2017; Tierz et al., 2017). This 

trend is due to the benefits offered by BNs in contrast with other methods of dependability 

analysis (Weber et al., 2012). Recent multi-hazard risk analysis studies focused on BNs (Nadim 

et al., 2013b; Liu et al., 2015; van Verseveld et al., 2015; Hashemi et al., 2016; Kwag and Gupta, 

2017) to model interactions and dependence between natural hazards and their potential impacts.  

 

The concept of a BN was developed to manage various statistical dependencies directly. Bayesian 

networks are probabilistic networks that rely on Bayes Theorem to draw an inference based on 

prior evidence. A BN is a Direct Acyclic Graph which is composed of nodes and arcs, which can 

either represent dependencies or cause-effect relationships between variables (Figure 6.2). Each 

node defines either a discrete or continuous random variable, even if there are still substantial 

limitations when dealing with continuous variables. Each node of a BN has a parent and a child 

node (if not, it is a root node). Each node has a conditional probability table that describes the 

quantitative relationship with its connected nodes.  

 

To overcome the limitations when dealing with continuous variables, there are several options 

including: Gaussian Bayesian networks (Scutari, 2009), hybrid Bayesian networks than can 

associate discrete and continuous variables (Langseth et al., 2009), and non-parametric Bayesian 

networks (NPBN) which associates the structure of Bayesian network and copulas (Hanea, 2009; 

Hanea et al., 2010, 2015). This last method has been used to study multiple dependence between 

river discharge and storm surge in the USA during a hurricane (Couasnon et al., 2018). The 

association of copulas and BN is a dynamic area of study, and different approaches have already 

been developed with very few applications to natural hazards (Hanea, 2009; Elidan, 2010; Bauer 

and Czado, 2016; Pircalabelu et al., 2017). However, one current limitation of NPBN is that they 
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have been developed with the normal copula (Couasnon et al., 2018; Paprotny et al., 2020), which 

is asymptotically independent (See Chapter 4). 

 

 

Figure 6.2: Graphical representation of a simple Bayesian Network with three nodes (X1, X2, X3) and 

two arcs (X1 to X2 and X1 to X3).  

 

6.4.1.2 Multivariate modelling method: Pair copula constructions 

Copulas have already been extensively discussed in Chapter 2 and Chapter 4. Copulas’ main 

limitations arise when increasing the number of variables to be studied. Multivariate parametric 

copulas lack flexibility when modelling systems with high dimensionality and heterogeneous 

dependencies among the different pairs (Bevacqua et al., 2017). A way to overcome limitations 

of copulae is the pair-copula construction (PCC) also called vine copula (Bedford and Cooke, 

2002; Aas et al., 2009; Vaz de Melo Mendes et al., 2010; Hashemi et al., 2016; Bevacqua et al., 

2017a). PCCs decomposes a n-dimension copula into the product of n(n–1)/2 bivariate copulas, 

providing higher flexibility.  Different types of structures exist for vines, such as the C-vine and 

D-vine. The decomposition which is operated in vine copulas allows selecting different bivariate 

copulas for each pair of variables, providing enormous flexibility in dependence modelling 

(Brechmann and Schepsmeier, 2013; Hao and Singh, 2016). 

 

Bevacqua et al. (2017) used vine copulas to model compound flooding in Italy. In this study, two 

rivers are included. Two other variables called predictors are also added to the model. These 

predictors are based on other environmental variables such as rainfall, sea level pressure, and 

wind speed. Predictors allow an insight into physical processes. Five dependent variables are part 

of this model, and pair copula construction avoids the necessity of homogeneity of the pair-

dependencies. Finally, there are many assumptions made with these methods (e.g. threshold 

choice, copula selection) which can lead to additional uncertainty.  

 

NPBN and PCC are both able to model complex dependency patterns between numerous 

continuous variables. These methods have already been applied to model compound flooding 
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(Bevacqua et al., 2017; Couasnon et al., 2018) and compound dry hazards (Manning et al., 2018). 

Strengths and weaknesses of these two methods for applications to hazard interrelations are 

summarized in Table 6.2. 

Table 6.2: Strengths and weaknesses of pair copula constructions (PCC) and non-parametric Bayesian network 

(NPBN) for hazard interrelations modelling. 

Modelling 

methods 

Strengths Weaknesses Applications to 

multi-hazard 

Non-parametric 

Bayesian 

Network 

Low computational requirements, 

flexibility of the Normal copula, 

intuitive graphical representations 

Currently only implemented 

with the Normal copula, no 

package in R 

Couasnon et al., 

2018 

Pair copula 

constructions 

Flexibility due to a large number 

of possible copulas to be 

implemented, packages available 

in R (e.g., CDVine) 

A lot of possible constructions 

and decompositions, important 

computational requirements, 

graphical representation less 

intuitive 

Bevacqua et al. 

(2017), 

Manning et al. 

(2018) 

 

6.4.1.3 Metrics and measures for multiple hazard interrelations  

The return period concept was initially defined in a univariate framework and extended into the 

multivariate framework (Singh et al., 2007). Defining a return period for a combination of two 

hazards requires carefully selecting the type of probability to be computed as discussed in 

Chapter 4. Moreover, while a return period is represented by a single value in a univariate 

context, it is represented by a curve containing an infinite amount of couples of values in a 

bivariate context. With three variables, the return period becomes a surface, and it becomes hard 

to visually represent with more than three variable and ultimately loses its sense in a multivariate 

framework (Serinaldi, 2015). Other metrics and ways to estimate extreme multivariate events are 

necessary to expand the framework developed in this thesis beyond hazard pairs modelling. The 

concepts of dominant hazards and dominant hazard interrelations introduced in Chapter 3 could 

help to simplify the concept of return period in a multivariate context. Multi-hazard Networks and 

dominant hazards also offer opportunities to analyse multi-hazard events from multiple 

perspectives. 

 Systematically attribute occurrences of specific natural hazards to a multi-

hazard events 

There is one well-known limitation to the application of extreme value statistic to natural hazards. 

The observations (or data) studied needs to be a sequence of independent and identically 

distributed (i.i.d) random variables. However, for many types of data, this assumption is not 

realistic. For example, if extreme precipitation has occurred at a given hour, the conditions on the 
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following hour will likely be closely related to the conditions on the current hour. To address this 

issue, two main modelling approaches have been developed in a univariate context (i) the block 

maxima approach and (ii) the peak over threshold approach (Coles, 2001; Davison and Huser, 

2015). In recent years the peaks over threshold approach has become increasingly popular as it 

allows to incorporate more data into the statistical model than a block maxima approach (Dutfoy 

et al., 2014). For the peaks over threshold approach, methods to optimize the threshold selection 

and to decluster extreme observation have been developed since the mid-1990s (Bernardara et al., 

2014). Declustering ensures that observations used as input for a statistical model are independent, 

but not that they belong to the same underlying distribution. For example, two observations of 

extreme precipitation at a given location can belong to two different underlying distributions. The 

assumption here is that observation natural hazards can be split into more homogeneous sub-

samples in term of physical processes and genesis.  

 

Natural hazard observations have been attributed to atmospheric conditions or weather pattern to 

create meaningful sub-samples. Such an approach has been performed for extreme precipitation 

(Hand et al., 2004; Garavaglia et al., 2010), wildfire (Amraoui et al., 2015), rainfall-triggered 

landslides (Wood et al., 2016), extreme waves and storm surge (Rueda et al., 2016) and 

compound flooding (Hendry et al., 2019). Weather patterns or weather types are atmospheric 

circulation types over a defined region (Neal et al., 2016). One well-known classification for 

British weather in the Lamb weather type (LWT) classification (Hulme and Barrow, 1997). This 

classification is based on daily sea-level pressure and has been performed on different periods 

and with different input data (Jones et al., 2013). In this classification, seven main weather types 

are recognised: the anticyclonic (A), easterly (E), southerly (S), westerly (W), northwesterly 

(NW), northerly (N) and cyclonic (C) types. The remaining days are classified into 19 hybrid 

combinations of the main types (Wilby and Quinn, 2013). Other classifications have been 

developed for Great Britain (Neal et al., 2016) or Europe (Philipp et al., 2010).  

 

In Figure 6.3 are displayed the LWT that are the most frequently associated with compound wind 

and precipitation events as defined in Chapter 5. Four LWT are represented: the cyclonic (C), 

which encompasses the vast majority of the area, the southwesterly (SW) on North East England 

and most of Scotland, the westerly (W) on north Scotland and the southerly (S) weather type of 

the eastern edge of the study area. Figure 6.3 provides a supplementary layer of information about 

compound rain and wind events in Great Britain. However, weather classifications have 

limitations and cannot be the unique tool to attribute the occurrence of a hazard to a multi-hazard 

network. For example, the Lamb classification represents the circulation over a very wide area, 

and this means that it can be challenging to relate the information in the catalogue to local 

conditions (Hulme and Barrow, 1997). Such classifications are in general most relevant for use 

in forecasting and to examine broad characteristics of the climate of a region.  
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Figure 6.3: Lamb Weather Types associated with compound wind and precipitation extremes during the period 

1979–2019. The map shows the Lamb Weather Type that is most frequently associated with compound extreme 

precipitation and wind event in each grid cell.  

 

Classifying natural hazards according to atmospheric circulation patterns, seasonality or other 

potential drivers aims to create more homogenous data samples and facilitate the application of 

extreme value statistics. In Chapter 3 natural hazards are grouped, and hazard interrelations are 

contextualized into multi-hazard networks (e.g., extratropical cyclones, convective storms). 

Seasonal patterns in the occurrence of compound wind and precipitation events over Great Britain 

are highlighted in Appendix H. However, further research is needed to refine the link between 

seasonality, atmospheric conditions and multi-hazard networks defined in Chapter 3. Dowdy and 

Catto (2017) analysed extreme weather caused by front, cyclone and thunderstorm occurrence at 

a global level. They identified types of storm combinations that are most frequently associated 

with extreme precipitation and extreme wind events. The identification of “storm types” 

associated with natural hazards has already been performed in hydrology (Hand et al., 2004) to 

categorize extreme precipitation events. This approach is particularly valuable when some natural 

hazards can be part of several multi-hazard networks. This is the case for extreme rainfall 
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(extratropical cyclone, convective storm), extreme wind (extratropical cyclone, convective storm, 

compound dry, compound cold) or landslides (extratropical cyclone, convective storm, ground 

movements). 

 Adopt event-based storyline approaches 

Another challenge associated with multi-hazard and extreme events, in general, is the lack of 

observations. Indeed, extreme events are by nature rare and multiple or compound extremes tend 

to be even rarer. Here is sketched an event-based stroyline approach, which should be seen as 

complementary to the two other research directions described in Sections 6.4.1 and 6.4.2. 

Adopting event-based storyline approaches is particularly relevant to analyze extreme low 

probability-high impact events, the so-called “black swan” or “perfect storm” (Paté-Cornell, 

2012).  

 

Event-based storylines emphasize the plausibility of events rather than their probability (Sillmann 

et al., 2021). They acknowledge the complexity of the interrelations between natural hazards, 

their drivers and the difficulty to analyze multi-hazard events in a probabilistic manner. 

Schauwecker et al. (2019) analyzed cascading effects leading to three multi-hazard events. They 

show that an event-based pathway scheme allows visualizing complex effects within a multi-

hazard event. Understanding drivers and attributes of a multi-hazard event also allows estimating 

attributes of unseen events by tweaking some characteristics of the event or its drivers. Thompson 

et al. (2017) used a large ensemble of climate simulations to assess the chances of unprecedented 

extreme precipitation events in the current climate. This study was the base for an event-based 

storyline approach where a counterfactual “black swan” version of Storm Desmond (Appendix 

C) was created by artificially increasing its precipitation (HM Government, 2016; Sillmann et al., 

2021). Such an approach could also be taken in a multi-hazard context by building on multi-

hazard networks designed in Chapter 3. 

 

Besides offering tools to visualize and understand interrelations between hazards and drivers 

within a multi-hazard event, detailed analysis of major multi-hazard events could be used (i) to 

anticipate plausible unseen multi-hazard events and (ii) as training tools for complex multi-hazard 

models discussed in Section 6.4.1. 

 

 Concluding remarks 

This thesis focused on the concept of multi-hazard and the quantification of hazard interrelations. 

The need for a framework that includes multiple hazards and possible interrelations at a given 

location has been advocated for almost 50 years (Hewitt and Burton, 1971). As discussed in 
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Chapter 2, significant progress has been achieved in the past 20 years at different levels (research, 

industry, policy) to identify, classify and assess hazard interrelations (Kappes et al., 2010; Gill 

and Malamud, 2014; Leonard et al., 2014; Decker and Brinkman, 2015; Ciurean et al., 2018; 

Zscheischler et al., 2020). Chapter 2 contributes to harmonising the terminology around the 

concepts of multi-hazard and compound events and proposes new classifications of hazard 

interrelations and associated modelling approaches. This thesis contributes to creating a multi-

hazard framework that benefits from interconnections between different disciplines working on 

hazard interrelations.  

 

Adopting a multi-hazard approach means moving from a list of single hazard relevant to a place 

and time period to a holistic multi-hazard framework that includes all potential hazard 

interrelationships. Chapter 3 contextualized this work in a geographical context by assessing the 

multi-hazard landscape of the European Atlantic Region. The concept of multi-hazard networks 

is defined to create generic sets of interrelated hazards and highlighting the most likely natural 

hazard interrelations, providing evidence for practitioners when selecting which hazards to be 

considered.  

 

The definition of spatial and temporal scales of hazard interrelation poses several problems 

(compatibility of different data sources, potential time lags). Chapter 3 highlights the problem of 

compatibility of different data sources by reviewing 35 databases of environmental data and 

qualitatively assessing the spatial and temporal attributes of different multi-hazard networks. In 

Chapter 5, a clear definition of the boundaries of compound hazards in space and time is provided 

and stresses the need to consider hazard interrelations on flexible spatial and temporal scales 

rather than within blocks (e.g., hours, days, grid cell, observation station). 

 

The funding for this PhD thesis and its conception was with respect to the assessment of multi-

hazard risk relevant to energy infrastructures. Chapter 4 is particularly aimed at engineers and 

practitioners of the energy, transport and geotechnical sectors. Different methods to model hazard 

interrelations have been assessed systematically, offering an accessible framework for 

considering the strength and weaknesses of the models and guidance for further applications. 

Metrics and measures used to assess the interrelation between hazards, and their probability (e.g., 

return period) are therefore tailored for engineering purposes. Chapter 4 is done within the British 

and European context. Features of the interrelations between extreme precipitation and extreme 

wind have been extensively analysed and discussed in Chapters 3, 4 and 5. While these two 

hazards are of global relevance (Martius et al., 2016; Dowdy and Catto, 2017), they play a major 

role in the British (hazard) landscape. Methodologies developed to classify quantification 

methodologies (Chapter 2), design multi-hazard networks (Chapter 3), quantify the dependence 
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between hazards (Chapter 4) and assess spatiotemporal features of hazard interrelations 

(Chapter 5) are aimed to be widely applicable in term of geographical location.  

 

To conclude, this thesis proposed a quantitative framework for multi-hazard analysis based on 

five key aspects which have been addressed through the thesis:  

(i) classify hazard interrelations  

(ii) assess modelling methods for hazard interrelations,  

(iii) catalogue datasets suitable multi-hazard assessment,  

(iv) consider spatiotemporal scales of hazard interrelations  

(v) identify the physical processes behind multi-hazard.  

This thesis adds to existing literature and understanding, helping to advance our current multi-

hazard frameworks. There are many remaining opportunities to develop and improve current 

knowledge, in particular, to assess methodologies to model hazard interrelations and as discussed 

in Section 6.3 to identify physical processes behind multi-hazard. 
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Appendix A: Multi-hazard Database 

 

This appendix is a database of 146 references related to Chapter 2 and consists of the following: 

• Table A1. Multi-hazard Database Structure. Detailed metadata information describing 

Table A2 

• Table A2. Multi-hazard Database: 146 multi-hazard references (rows) with 14 attributes 

(columns) for each reference including citation information, keywords, hazards studied, 

and then information about the modelling method (if appropriate). 
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Table A1: Multi-hazard Database Structure. Detailed metadata information describing Table A2. 

Attributes Definition 

Reference ID   

Subgroup T for terminology; M for models and I for interrelations 

TS (Terminology stream) MH for "multi-hazard"; CH for "compound hazard" 

Ref type article; book; book chapter; conference proceeding; PhD thesis; MSc 

thesis; report 

Citation   

Keywords   

Interrelation studied (Y/N) Is the source focusing on natural hazard interrelations 

Studied area   

Hazards 

Quantitative/Semi 

quantitative/Qualitative 

Is the source using quantitative (Quant), semi-quantitative (S-Quant) or 

qualitative (Qual)method to study hazard interrelations. 

Modelling method Semi-quantitative or quantitative method used to model interrelations or 

connection between hazards/disasters/variables. Can be:  

Logistic regression; Fuzzy logic; Hydrodynamic model; Fault tree; 

Bayesian Network; Empirical counting; Markov chain; Extreme value 

copula; Vine copula; Linear regression; Rank correlation; Hydrological 

model; Archimedean copula; Event tree; Climate model; Atmospheric 

model; Tail dependence; Power regression; Polynomial regression; Joint 

tail model; Multivariate extreme model; Gaussian copula; Quantile 

regression; Conditional extreme model 
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Table A2: Multi-hazard Database. Given are 146 multi-hazard references (rows) with 14 attributes (columns) for each reference, including citation information, keywords, 

hazards studied, and then information about the modelling method (if appropriate). A detailed description of each column is given in Table A1. 

ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

1 T MH article Abdulwahid, W.M. and Pradhan, B., 2017. 

Landslide vulnerability and risk assessment 

for multi-hazard scenarios using airborne laser 

scanning data (LiDAR). Landslides, 14(3), 

pp.1057-1076. 

landslides; remote sensing; 

hazard assessment; 

vulnerability; risk; lidar; 

GIS 

Yes Malaysia Landslide; 

Extreme Rainfall 

S-Quant Logistic 

Regression 

2 T MH MSc 

Thesis 

Ahuja, A., 2011. Review of assessment, 

design, and mitigation of multiple hazards. 

 
No USA Multiple     

3 T MH article Araya-Muñoz, D., Metzger, M.J., Stuart, N., 

Wilson, A.M.W. and Carvajal, D., 2017. A 

spatial fuzzy logic approach to urban multi-

hazard impact assessment in Concepción, 

Chile. Science of The Total Environment, 576, 

pp.508-519. 

developing countries; 

bottom-up evaluation; 

fuzzy modelling; 

geographical information 

system (GIS); vulnerability 

Yes Chili Drought; River 

Flooding; 

Extreme hot 

temperature; Sea 

Level Rise; 

Wildfire 

S-Quant Fuzzy Logic 

4 T MH article Asare-Kyei, D., Renaud, F.G., Kloos, J., Walz, 

Y. and Rhyner, J., 2017. Development and 

validation of risk profiles of West African 

rural communities facing multiple natural 

hazards. PloS one, 12(3), p.e0171921. 

  No West Africa Drought; Flood     

5 T MH article Bernal, G.A., Salgado-Gálvez, M.A., Zuloaga, 

D., Tristancho, J., González, D. and Cardona, 

O.D., 2017. Integration of probabilistic and 

multi-hazard risk assessment within urban 

development planning and emergency 

preparedness and response: Application to 

Manizales, Colombia. International Journal of 

Disaster Risk Science, 8(3), pp.270-283. 

Manizales (Colombia); 

multi-hazard risk 

assessment; probabilistic 

hazard analysis; 

probabilistic risk 

assessment; urban 

planning; emergency 

response 

No Colombia Earthquake; 

Landslide; 

Volcanic 

Eruption 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

6 T MH article Birkmann, J., Wenzel, F., Greiving, S., 

Garschagen, M., Vallée, D., Nowak, W., 

Welle, T., Fina, S., Goris, A., Rilling, B. and 

Fiedrich, F., 2016. Extreme Events, Critical 

Infrastructures, Human Vulnerability and 

Strategic Planning: Emerging Research Issues. 

Journal of Extreme Events, 3(04), p.1650017. 

critical infrastructure; 

urban planning; spatial 

planning; risk 

management; climate 

change; extreme events; 

cascading effects 

Yes Germany 
 

Qual   

7 T MH conference 

proceeding 

Cardona, O.D., Ordaz, M., Reinoso, E., 

Yamín, L.E. and Barbat, A.H., 2012, 

September. CAPRA–comprehensive approach 

to probabilistic risk assessment: international 

initiative for risk management effectiveness. 

In Proceedings of the 15th World Conference 

on Earthquake Engineering. Lisbon, Portugal. 

seismic risk; building 

damage; insurance; risk 

reduction; loss scenarios 

No multiple Earthquake     

8 T MH article Chen, L., van Westen, C.J., Hussin, H., 

Ciurean, R.L., Turkington, T., Chavarro-

Rincon, D. and Shrestha, D.P., 2016. 

Integrating expert opinion with modelling for 

Quant multi-hazard risk assessment in the 

Eastern Italian Alps. Geomorphology, 273, 

pp.150-167. 

hydro-meteorological 

hazards; Italy; multi-

hazard; quant risk 

assessment; uncertainty; 

vulnerability; GIS 

Yes Italy River Flooding; 

Landslide 

Quant Hydrodynamic 

model 

9 T MH&C book Davis, I. ed., 2014. Disaster risk management 

in Asia and the Pacific. Routledge. 

  No Asia Na     

10 T MH report Delmonaco, G., Margottini, C. and 

Spizzichino, D., 2006. ARMONIA 

methodology for multi-risk assessment and the 

harmonisation of different natural risk maps. 

Deliverable 3.1. 1, ARMONIA. 

  No NA Earthquake; River 

Flooding; 

Landslide; Forest 

Fire; Avalanche; 

Volcanic 

Eruption 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

11 T MH&C article Eshrati, L., Mahmoudzadeh, A. and Taghvaei, 

M., 2015. Multi hazards risk assessment, a 

new methodology. International Journal of 

Health System and Disaster Management, 

3(2), p.79. 

indicator-based 

vulnerability; new 

methodology; risk 

assessment; domino 

effects; multi-hazard 

No NA Na     

12 T MH article Forzieri, G., Bianchi, A., e Silva, F.B., 

Herrera, M.A.M., Leblois, A., Lavalle, C., 

Aerts, J.C. and Feyen, L., 2018. Escalating 

impacts of climate extremes on critical 

infrastructures in Europe. Global 

Environmental Change, 48, pp.97-107. 

climate change impact; 

critical infrastructures; loss 

and damage; multiple 

climate hazards 

No Europe Extreme Hot 

temperature; 

Extreme Cold 

temperature; 

Drought; 

Wildfire; Floods; 

Windstorm 

    

13 T MH article Forzieri, G., Feyen, L., Russo, S., 

Vousdoukas, M., Alfieri, L., Outten, S., 

Migliavacca, M., Bianchi, A., Rojas, R. and 

Cid, A., 2016. Multi-hazard assessment in 

Europe under climate change. Climatic 

Change, 137(1-2), pp.105-119. 

climate change; Europe; 

resilience; scenarios; multi-

hazards 

No Europe Extreme Hot 

temperature; 

Extreme Cold 

temperature; 

Drought; 

Wildfire; Floods; 

Windstorm 

    

14 T MH&C article Gallina, V., Torresan, S., Critto, A., Sperotto, 

A., Glade, T. and Marcomini, A., 2016. A 

review of multi-risk methodologies for natural 

hazards: Consequences and challenges for a 

climate change impact assessment. Journal of 

environmental management, 168, pp.123-132. 

multi-hazard 

multi-hazard risk 

multi-risk 

climate change 

No NA Multiple     
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

15 T MH article Garcia-Aristizabal, A., Bucchignani, E., 

Palazzi, E., D’Onofrio, D., Gasparini, P. and 

Marzocchi, W., 2015. Analysis of non-

stationary climate-related extreme events 

considering climate change scenarios: an 

application for multi-hazard assessment in the 

Dar es Salaam region, Tanzania. Natural 

Hazards, 75(1), pp.289-320. 

non-stationary extreme 

events; climate change; 

multi-hazard; Bayesian 

inference; extreme 

precipitation; extreme 

temperature; Dar Es 

Salaam, Tanzania 

No Tanzania Extreme Rainfall; 

Extreme 

Temperature 

    

16 T MH report Garcia-Aristizabal, A., Marzocchi, W., Woo, 

G., Reveillere, A., Douglas, J., Le Cozannet, 

G., Rego, F., Colaco, C., Fleming, K., Pittore, 

M. and Tyagunov, S., 2012. Review of 

existing procedures for multi-hazard 

assessment. 

  No NA Multiple     

17 T MH conference 

proceeding 

Gehl, P. and D’Ayala, D., 2015, July. 

Integrated multi-hazard framework for the 

fragility analysis of roadway bridges. In 12th 

international conference on applications of 

statistics and probability in civil engineering 

(ICASP12), Vancouver, BC, Canada (pp. 12-

15). 

  No NA Earthquake; River 

Flooding; Ground 

Failure 

    

18 T+I MH article Gill, J.C. and Malamud, B.D., 2014. 

Reviewing and visualizing the interactions of 

natural hazards. Reviews of Geophysics, 

52(4), pp.680-722. 

hazard combination; multi-

hazard 

No Multiple Multiple     

19 T MH article Gill, J.C. and Malamud, B.D., 2016. Hazard 

interactions and interaction networks 

(cascades) within multi-hazard methodologies. 

Earth System Dynamics, 7(3), p.659. 

hazard combination; multi-

hazard 

No Italy Multiple     
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

20 T MH article Gill, J.C. and Malamud, B.D., 2017. 

Anthropogenic processes, natural hazards, and 

interactions in a multi-hazard framework. 

Earth-Science Reviews. 

anthropogenic process; 

natural hazard interaction 

No Australia Multiple     

21 T MH article Greiving, S., 2006. Integrated risk assessment 

of multi-hazards: a new methodology. Special 

Paper-Geological Survey of Finland, 42, p.75. 

risk assessment; 

technological hazards; 

vulnerability; natural 

hazards 

No Finland Na     

22 T MH article Grünthal, G., Thieken, A.H., Schwarz, J., 

Radtke, K.S., Smolka, A. and Merz, B., 2006. 

Comparative risk assessments for the city of 

Cologne–storms, floods, earthquakes. Natural 

Hazards, 38(1-2), pp.21-44. 

risk assessment; storm; 

flood; earthquake 

No Germany Storm; River 

Flooding; 

Earthquake 

    

23 T C article Hao, Z. and Singh, V.P., 2016. Review of 

dependence modeling in hydrology and water 

resources. Progress in Physical Geography, 

40(4), pp.549-578. 

copula; entropy; extreme 

dependence; multivariate 

distribution; nonparametric 

method; parametric 

distribution; spatial 

dependence; temporal 

dependence; dependence 

modelling 

Yes     Quant Review 

24 T C article Hao, Z., Singh, V.P. and Hao, F., 2018. 

Compound Extremes in Hydroclimatology: A 

Review. Water (20734441), 10(6). 

climate change; compound 

extremes; indicator; 

multivariate distribution; 

quantile regression 

Yes     Quant Review 

25 T MH&C article Hillier, J.K., Macdonald, N., Leckebusch, 

G.C. and Stavrinides, A., 2015. Interactions 

between apparently ‘primary’weather-driven 

hazards and their cost. Environmental 

Research Letters, 10(10), p.104003. 

extreme weather; flood; 

insurance; interaction; risk; 

storm; atmospheric 

Yes United Kingdom Extreme Wind; 

Drought; River 

Flooding 

Qual   
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

26 T MH article Jaimes, M.A., Reinoso, E. and Esteva, L., 

2015. Risk analysis for structures exposed to 

several multi-hazard sources. Journal of 

Earthquake Engineering, 19(2), pp.297-312. 

intensity; losses; multiple 

hazards; simultaneous 

hazards; correlated damage 

No Mexico Earthquake; 

Extreme Wind; 

Tsunami; 

Landslide 

    

27 T MH conference 

proceeding 

James, M., Reinoso, E., Esteva, L.; A method 

for the risk assessment of buildings due to 

multiple hazard sources and correlated failure 

modes; NCEE 2014 - 10th U.S. National 

Conference on Earthquake Engineering: 

Frontiers of Earthquake Engineering 

  No   Earthquake; 

Extreme Wind; 

Tsunami; 

Landslide 

    

28 T MH article Kameshwar, S. and Padgett, J.E., 2014. Multi-

hazard risk assessment of highway bridges 

subjected to earthquake and hurricane hazards. 

Engineering Structures, 78, pp.154-166. 

earthquake; hurricane; 

metamodel 

metamodel; risk; multi-

hazard 

No USA Earthquake; 

Extreme Wind 

    

29 T MH article Kappes, M. S., Margreth Keiler, and Thomas 

Glade. "From single-to multi-hazard risk 

analyses: a concept addressing emerging 

challenges." (2010): 351-356. 

multi-hazard; methodology No France Avalanche; 

Landslide; River 

Flooding; 

Earthquake 

    

30 T MH&C PhD 

Thesis 

Kappes, M.S., 2011. Multi-hazard risk 

analyses: a concept and its implementation. na. 

  No France Avalanche; 

Landslide; River 

Flooding 

    

31 T MH&C article Kappes, M.S., Keiler, M., von Elverfeldt, K. 

and Glade, T., 2012. Challenges of analyzing 

multi-hazard risk: a review. Natural Hazards, 

64(2), pp.1925-1958. 

state of the art; multi-

hazard 

No   Avalanche; 

Landslide; River 

Flooding 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

32 T MH article Kappes, M.S., Papathoma-Koehle, M. and 

Keiler, M., 2012. Assessing physical 

vulnerability for multi-hazards using an 

indicator-based methodology. Applied 

Geography, 32(2), pp.577-590. 

decision-making; multi-

hazard; physical 

vulnerability; vulnerability 

indicators 

No France Avalanche; 

Landslide; River 

Flooding 

    

33 T MH article Katsanos, E.I., Thöns, S. and Georgakis, C.Τ., 

2016. Wind turbines and seismic hazard: a 

state‐of‐the‐art review. Wind Energy, 19(11), 

pp.2113-2133. 

dynamic analysis; 

earthquake strong ground 

motions; multi-hazard 

environment; seismic 

loading; soil-structure 

interaction; structural 

response; wind turbines 

No   Earthquake     

34 T MH article Komendantova, N., Scolobig, A., Garcia-

Aristizabal, A., Monfort, D. and Fleming, K., 

2016. Multi-risk approach and urban 

resilience. International Journal of Disaster 

Resilience in the Built Environment, 7(2), 

pp.114-132. 

decision making; 

governance; 

interdependency; 

knowledge generation; 

urban resilience; multi-risk 

No   Earthquake     

35 T MH article Koudogbo, F.N., Duro, J., Rossi, L., Rudari, 

R. and Eddy, A., 2014, October. Multi-hazard 

risk analysis using the FP7 RASOR Platform. 

In Remote Sensing for Agriculture, 

Ecosystems, and Hydrology XVI (Vol. 9239, 

p. 92390J). International Society for Optics 

and Photonics. 

multi-hazard; risk 

assessment; tandem-x 

global DEM 

No Italy, Haiti Earthquake; 

Landslide; River 

Flooding; 

Extreme Wind 

    

36 T MH article Kreibich, H., Bubeck, P., Kunz, M., Mahlke, 

H., Parolai, S., Khazai, B., Daniell, J., Lakes, 

T. and Schröter, K., 2014. A review of 

multiple natural hazards and risks in Germany. 

Natural Hazards, 74(3), pp.2279-2304. 

risk analysis; earthquakes; 

extreme temperatures; 

floods; multi-risk 

approaches; risk 

management; storms; g 

Germany; past natural 

hazard events 

No Germany Earthquake; 

Extreme 

Temperature; 

River Flooding; 

Extreme Wind 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

37 T MH&C article Kumasaki, M., King, M., Arai, M. and Yang, 

L., 2016. Anatomy of cascading natural 

disasters in Japan: Main modes and linkages. 

Natural Hazards, 80(3), pp.1425-1441. 

cascading natural disaster; 

compounding; interaction 

patters; risk assessment; 

striking; undermining; 

blocking 

Yes Japan Earthquake; 

Landslide; 

Extreme 

Temperature; 

Tsunami; 

Wildfire; 

Lightning 

Qual   

38 T MH article Kwag, S. and Gupta, A., 2017. Probabilistic 

risk assessment framework for structural 

systems under multiple hazards using 

Bayesian statistics. Nuclear Engineering and 

Design, 315, pp.20-34. 

 

Bayesian inference; 

Bayesian networks; 

vulnerability beyond 

design basis; multi-hazard 

risk assessment 

Yes USA River Flooding; 

Earthquake; 

Extreme Wind 

S-Quant Fault tree; 

Bayesian 

Network 

39 T C report Lavell, A., Oppenheimer, M., Diop, C., Hess, 

J., Lempert, R., Li, J., Muir-Wood, R. and 

Myeong, S., 2012. Climate change: new 

dimensions in disaster risk, exposure, 

vulnerability, and resilience. 

  No         

40 T MH article Lee, K.H. and Rosowsky, D.V., 2006. 

Fragility analysis of woodframe buildings 

considering combined snow and earthquake 

loading. Structural Safety, 28(3), pp.289-303. 

fragility; hazards; 

performance-based design; 

probability; shear wall; 

snow load; wood 

structures; earthquake 

No USA Snowfall; 

Earthquake 

    

41 T C article Leonard, M., Westra, S., Phatak, A., Lambert, 

M., van den Hurk, B., McInnes, K., Risbey, J., 

Schuster, S., Jakob, D. and Stafford‐Smith, 

M., 2014. A compound event framework for 

understanding extreme impacts. Wiley 

Interdisciplinary Reviews: Climate Change, 

5(1), pp.113-128. 

compound event; extreme 

impact; hazards; modelling 

system; statistical 

dependencies 

Yes Australia(Melbourne, 

Brisbane) 

River Flooding; 

Wildfire; Storm 

Surge 

S-Quant Fault tree; 

Bayesian 

Network 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

42 T C article Littell, J.S., Peterson, D.L., Riley, K.L., Liu, 

Y. and Luce, C.H., 2016. A review of the 

relationships between drought and forest fire 

in the United States. Global change biology, 

22(7), pp.2353-2369. 

climate variability; 

drought; ecological 

drought; fire; water 

balance; climate change 

Yes USA Drought; Wildfire Qual   

43 T+I MH article Liu, B., Siu, Y.L. and Mitchell, G., 2016. 

Hazard interaction analysis for multi-hazard 

risk assessment: a systematic classification 

based on hazard-forming environment. Natural 

Hazards and Earth System Sciences, 16(2), 

pp.629-642. 

quant approach; multi-

hazard 

Yes Several River Flooding; 

Storm Surge; 

Landslide 

S-Quant Empirical 

counting 

44 T MH article Liu, B., Siu, Y.L. and Mitchell, G., 2017. A 

Quant model for estimating risk from multiple 

interacting natural hazards: an application to 

northeast Zhejiang, China. Stochastic 

Environmental Research and Risk 

Assessment, 31(6), pp.1319-1340. 

hazard interaction; hazard-

forming environment; 

multi-hazard risk 

modelling; Zhejiang; 

Bayesian network 

Yes China River Flooding; 

Storm Surge; 

Landslide 

S-Quant Empirical 

counting 

45 T MH article Liu, Z., Nadim, F., Garcia-Aristizabal, A., 

Mignan, A., Fleming, K. and Luna, B.Q., 

2015. A three-level framework for multi-risk 

assessment. Georisk: Assessment and 

Management of Risk for Engineered Systems 

and Geohazards, 9(2), pp.59-74. 

Bayesian network; 

cascading hazards; time-

variant vulnerability; 

multi-risk 

Yes Europe Multiple S-Quant Bayesian 

Network 

46 T MH article Lozoya, J.P., Sarda, R. and Jiménez, J.A., 

2011. A methodological framework for multi-

hazard risk assessment in beaches. 

Environmental science & policy, 14(6), 

pp.685-696. 

iczm; coastal hazards ; 

ecosystem services; beach 

risk 

No Spain Storm Surge; 

Erosion; River 

Flooding 

    



Appendix A: Multi-hazard Database 

Page 242 

ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

47 T MH article Lung, T., Lavalle, C., Hiederer, R., Dosio, A. 

and Bouwer, L.M., 2013. A multi-hazard 

regional level impact assessment for Europe 

combining indicators of climatic and non-

climatic change. Global Environmental 

Change, 23(2), pp.522-536. 

flood; forest fire; heat 

stress; indicator; 

vulnerability; climate 

change 

No Europe Wildfire; River     

48 T MH article Marzocchi, W., Garcia-Aristizabal, A., 

Gasparini, P., Mastellone, M.L. and Di 

Ruocco, A., 2012. Basic principles of multi-

risk assessment: a case study in Italy. Natural 

hazards, 62(2), pp.551-573. 

multi-risk assessment; 

hazards interaction; risk 

assessment; Casalnuovo 

No Italy Volcanic Ash; 

Landslides; 

Flood; 

Earthquake 

    

49 T MH report Mignan, A., 2013. D7. 2 MATRIX-CITY User 

Manual. New methodologies for multi-hazard 

and multi-risk assessment methods for Europe, 

Deliverable, 7, p.78. 

  Yes   Multiple S-Quant Bayesian 

Network 

50 T MH article Mignan, A., Wiemer, S. and Giardini, D., 

2014. The quantification of low-probability–

high-consequences events: part I. A generic 

multi-risk approach. Natural Hazards, 73(3), 

pp.1999-2022. 

multi-hazard; multi-risk; 

extreme event; monte 

carlo; markov chain 

Yes   Multiple S-Quant Markov Chain 

51 T MH article Mignan, A., Scolobig, A. and Sauron, A., 

2016. Using reasoned imagination to learn 

about cascading hazards: a pilot study. 

Disaster Prevention and Management, 25(3), 

pp.329-344. 

cascading hazards; 

reasoned imagination 

Yes     Qual   

52 T MH article Mills, B., Unrau, D., Pentelow, L. and Spring, 

K., 2010. Assessment of lightning-related 

damage and disruption in Canada. Natural 

hazards, 52(2), pp.481-499. 

Canada; casualty; cost; 

damage; disruption; 

lightning; thunderstorm 

No Canada Lightning     



Appendix A: Multi-hazard Database 

Page 243 
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group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

53 T C article Moftakhari, H.R., Salvadori, G., 

AghaKouchak, A., Sanders, B.F. and 

Matthew, R.A., 2017. Compounding effects of 

sea level rise and fluvial flooding. Proceedings 

of the National Academy of Sciences, 114(37), 

pp.9785-9790. 

coastal flooding; 

compound extremes; 

copula; failure probability; 

sea level rise 

Yes USA River Flooding; 

Storm Surge 

Quant Copula 

54 T MH report Nadim, F., Liu, Z., Garcia-Aristizabal, A., 

Woo, G., Aspinall, W., Fleming, K., 

Vangelsten, B.V. and van Gelder, P., 2013. 

Framework for multi-risk assessment. 

Deliverable D5, 2. 

  Yes   Earthquake; 

Landslide 

S-Quant Bayesian 

Network; Fault 

tree 

55 T MH article Orencio, P.M. and Fujii, M., 2014. A 

spatiotemporal approach for determining 

disaster-risk potential based on damage 

consequences of multiple hazard events. 

Journal of Risk Research, 17(7), pp.815-836. 

geographic information 

system; Philippines; 

spatiotemporal approach; 

multi-risk assessment 

No Philippines Multiple     

56 T MH article Ouyang, M., 2014. Review on modeling and 

simulation of interdependent critical 

infrastructure systems. Reliability engineering 

& System safety, 121, pp.43-60. 

critical infrastructure 

systems (ciss); 

interdependencies; 

empirical approach; agent 

system dynamics; 

economic theory network; 

resilience 

NA         

57 T MH article Papathoma-Köhle, M., Kappes, M., Keiler, M. 

and Glade, T., 2011. Physical vulnerability 

assessment for alpine hazards: state of the art 

and future needs. Natural Hazards, 58(2), 

pp.645-680. 

debris flows; floods; 

landslides; rock falls; 

vulnerability; avalanches 
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group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

58 T MH&C article Pescaroli, G. and Alexander, D. (2018) 

Understanding Compound, Interconnected, 

Interacting, and Cascading Risks: A Holistic 

Framework. Risk Analysis 

compounding risk; critical 

infrastructure; interacting 

risk; interconnected 

risk; Sendai framework for 

disaster risk reduction; 

societal resilience; 

cascading risk 

Yes     Qual   

59 T C article Saleh, F., Ramaswamy, V., Wang, Y., 

Georgas, N., Blumberg, A. and Pullen, J., 

2017. A multi-scale ensemble-based 

framework for forecasting compound coastal-

riverine flooding: The Hackensack-Passaic 

watershed and Newark Bay. Advances in 

Water Resources, 110, pp.371-386. 

ensembles; flood 

forecasting; GEFS; HEC-

RAS 2-D; hydrodynamic 

modelling; SECOM; 

uncertainty; coastal urban 

estuary 

Yes USA River Flooding; 

Storm Surge 

Quant Hydrodynamic 

model 

60 T C article Salvadori, G., Durante, F., De Michele, C., 

Bernardi, M. and Petrella, L., 2016. A 

multivariate copula‐based framework for 

dealing with hazard scenarios and failure 

probabilities. Water Resources Research, 

52(5), pp.3701-3721. 

copulas; failure 

probability; risk 

assessment; scenario; 

multivariate 

No   River Flooding     

61 T MH article Schmidt, J., Matcham, I., Reese, S., King, A., 

Bell, R., Henderson, R., Smart, G., Cousins, J., 

Smith, W. and Heron, D., 2011. Quant multi-

risk analysis for natural hazards: a framework 

for multi-risk modelling. Natural Hazards, 

58(3), pp.1169-1192. 

natural hazards; multi-risk 

modelling; quant risk 

analysis; Hawke’s bay; 

New Zealand; earthquakes; 

wind storms; floods 

No New Zeland Earthquakes; 

Extreme Wind; 

River Flooding 

    

62 T MH article Selva, J., 2013. Long-term multi-risk 

assessment: statistical treatment of interaction 

among risks. Natural hazards, 67(2), pp.701-

722. 

multi-risk; multi-hazard No Italy Earthquake; 

Tsunami; 

Volcanic 

Eruption 
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group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

63 T MH article Steptoe, H., Jones, S.E.O. and Fox, H., 2018. 

Correlations between extreme atmospheric 

hazards and global teleconnections: 

Implications for multihazard resilience. 

Reviews of Geophysics, 56(1), pp.50-78. 

ENSO; hazards drivers; 

NAO; atmospheric 

connections between 

hazards 

No   Extreme Rainfall; 

Extreme Wind 

    

64 T+M C article Bevacqua, E., Maraun, D., Hobæk Haff, I., 

Widmann, M. and Vrac, M., 2017. 

Multivariate statistical modelling of compound 

events via pair-copula constructions: analysis 

of floods in Ravenna (Italy). Hydrology and 

Earth System Sciences, 21(6), pp.2701-2723. 

conceptual model; pair 

copula; compound event; 

meteorological predictors 

Yes Italy River Flooding; 

Storm Surge 

Quant Vine copula 

65 T MH article Tierz, P., Woodhouse, M.J., Phillips, J.C., 

Sandri, L., Selva, J., Marzocchi, W. and 

Odbert, H.M., 2017. A Framework for 

Probabilistic Multi-Hazard Assessment of 

Rain-Triggered Lahars Using Bayesian Belief 

Networks. Frontiers in Earth Science, 5, p.73. 

probabilistic hazard 

assessment; volcanic multi-

hazard; lahar triggering; 

Bayesian belief network; 

somma-vesuvius 

Yes Italy Extreme Rainfall; 

Landslide 

S-Quant Bayesian 

Network 

66 T MH article Tonini, R., Sandri, L. and Thompson, M.A., 

2015. PyBetVH: A Python tool for 

probabilistic volcanic hazard assessment and 

for generation of Bayesian hazard curves and 

maps. Computers & Geosciences, 79, pp.38-

46. 

Bayesian event tree; 

graphical user interface; 

hazard curves; interactive 

visualization; probabilistic 

volcanic hazard assessment 

No New Zealand Volcanic 

Eruption 

    

67 T MH&C book 

chapter 

Van Asch, T. ed., 2014. Mountain risks: from 

prediction to management and governance. 

Springer Netherlands. 

  No France Landslde; River 

Flooding; 

Avalanche 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

68 T C article AghaKouchak, A., Huning, L.S., Chiang, F., 

Sadegh, M., Vahedifard, F., Mazdiyasni, O., 

Moftakhari, H. and Mallakpour, I., 2018. How 

do natural hazards cascade to cause disasters?. 

climate change; 

environmental sciences; 

hydrology; policy 

No USA Wildfires     

69 M   article Caine, N., 1980. The rainfall intensity: 

duration control of shallow landslides and 

debris flows. Geografiska Annaler. Series A. 

Physical Geography, pp.23-27. 

rainfall; landslide; 

relationship 

    Extreme Rainfall; 

Landslide 

Quant Linear 

regression 

70 T MH article Van Verseveld, H.C.W., Van Dongeren, A.R., 

Plant, N.G., Jäger, W.S. and den Heijer, C., 

2015. Modelling multi-hazard hurricane 

damages on an urbanized coast with a 

Bayesian Network approach. Coastal 

Engineering, 103, pp.1-14. 

hurricane sandy ; xbeach; 

probabilistic damage 

hazards; Bayesian network 

Yes USA Extreme Waves; 

Storm Surge; 

Erosion 

S-Quant Bayesian 

Network 

71 T MH article Van Westen, C.J., 2013. Remote sensing and 

GIS for natural hazards assessment and 

disaster risk management. Treatise on 

geomorphology, 3, pp.259-298. 

cyclones; damage 

assessment; drought; 

earthquakes; elements-at-

risk; flooding; forest fires; 

geographic information 

systems; hazard 

assessment; landslides; 

mobile-gis; multi-hazards; 

remote sensing; risk 

assessment; risk 

management; spatial data; 

vulnerability assessment; 

community-based disaster 

risk management 

No   Landslides     
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

72 T+I MH&C book 

chapter 

van Westen, C.J., Greiving, S. and Dalezios, 

N.R., 2017. Environmental Hazards 

Methodologies for Risk Assessment and 

Management. Environmental hazards 

Methodologies for Risk Assessment and 

Management, pp.31-94. 

  Yes   Multiple Qual   

73 T MH conference 

proceeding 

Van Westen, C.J., Montoya, L., Boerboom, L. 

and Badilla Coto, E., 2002, September. Multi-

hazard risk assessment using GIS in urban 

areas: a case study for the city of Turrialba, 

Costa Rica. In Proc. Regional workshop on 

Best Practise in Disaster Mitigation, Bali (pp. 

120-136). 

  No Costa Rica Landslides     

74 T C article Wahl, T., Jain, S., Bender, J., Meyers, S.D. 

and Luther, M.E., 2015. Increasing risk of 

compound flooding from storm surge and 

rainfall for major US cities. Nature Climate 

Change, 5(12), p.1093. 

climate change; rainfall; 

risk; storm surge; USA; 

compound flooding 

Yes USA Extreme Rainfall; 

Storm Surge 

Quant Rank 

correlation 

75 T MH article Xu, L., Meng, X. and Xu, X., 2014. Natural 

hazard chain research in China: A review. 

Natural hazards, 70(2), pp.1631-1659. 

definition; hazard chain; 

mechanism; methodology; 

recognition; classification 

Yes China Multiple Qual   

76 M   article Carey, L.D., Rutledge, S.A. and Petersen, 

W.A., 2003. The relationship between severe 

storm reports and cloud-to-ground lightning 

polarity in the contiguous United States from 

1989 to 1998. Monthly weather review, 

131(7), pp.1211-1228. 

lightnings; severe storm; 

hailstorm; tornadoes 

Yes USA Lightning Quant Linear 

regression 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

77 M   article Catane, S.G., Abon, C.C., Saturay, R.M., 

Mendoza, E.P.P. and Futalan, K.M., 2012. 

Landslide-amplified flash floods—the June 

2008 Panay Island flooding, Philippines. 

Geomorphology, 169, pp.55-63. 

landslide dam; flash flood; 

hydrologic modelling; 

typhoon fengshen; 

Philippines 

  Alkan, Philippines Extreme Rainfall 

; Landslides; 

River Flooding 

Quant Hydrological 

model 

78 T C article Zscheischler, J. and Seneviratne, S.I., 2017. 

Dependence of drivers affects risks associated 

with compound events. Science advances, 

3(6), p.e1700263. 

  Yes   Extreme 

Temperature; 

Drought 

Quant Linear 

correlation; 

Archimedean 

Copula 

79 T MH article Zuccaro, G., Cacace, F., Spence, R.J.S. and 

Baxter, P.J., 2008. Impact of explosive 

eruption scenarios at Vesuvius. Journal of 

Volcanology and Geothermal Research, 

178(3), pp.416-453. 

cumulative damage; impact 

scenarios; probabilistic 

model; sub-plinian 

eruption 

Yes Italy Volcanic 

Eruption 

S-Quant Event tree 

80 M   article Costa, J.E. and Schuster, R.L., 1988. The 

formation and failure of natural dams. 

Geological society of America bulletin, 

100(7), pp.1054-1068. 

landslide; dams failure; 

floods 

  worldwide Extreme Rainfall; 

Earthquake; 

Snow Melt; 

Landslide; River 

Flooding 

Quant Linear 

regression 

81 M   article Fischer, E.M. and Knutti, R., 2013. Robust 

projections of combined humidity and 

temperature extremes. Nature Climate Change, 

3(2), pp.126-130. 

humidity; temperature 

extreme; climate change 

Yes worldwide Humidity; 

Extreme 

Temperature 

Quant Climate model 

82 M   article Geist, E.L. and Parsons, T., 2006. Probabilistic 

analysis of tsunami hazards. Natural Hazards, 

37(3), pp.277-314. 

tsunami; probabilistic 

hazard analysis; seismic 

hazard analysis; monte 

carlo; tide gauge; 

empirical; power-law 

  North American 

Pacific coast 

Earthquake; 

Tsunami 

Quant Hydrodynamic 

model 
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TS Ref 
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Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

83 M   article Glade, T., Crozier, M. and Smith, P., 2000. 

Applying probability determination to refine 

landslide-triggering rainfall thresholds using 

an empirical" Antecedent Daily Rainfall 

Model". Pure and Applied Geophysics, 157(6-

8), pp.1059-1079. 

landslides; probabilistic 

threshold determination; 

rainfall threshold; critical 

water 

  New Zeland Extreme Rainfall; 

Landslide 

Quant Logistic 

regression 

84 M   article Irish, J.L., Resio, D.T. and Ratcliff, J.J., 2008. 

The influence of storm size on hurricane 

surge. Journal of Physical Oceanography, 

38(9), pp.2003-2013. 

hurricane; storm surge; 

Katrina 

  Gulf of Mexico Storm Surge; 

Extreme Wind 

Quant Atmospheric 

model 

85 M   article Johansson, B. and Chen, D., 2003. The 

influence of wind and topography on 

precipitation distribution in Sweden: Statistical 

analysis and modelling. International Journal 

of Climatology, 23(12), pp.1523-1535. 

precipitation; orographic 

enhancement; regression 

analysis; topography; 

airflow; spatial 

distribution; Sweden 

Yes Sweden Extreme Rainfall Quant Linear 

regression 

86 M   article Keefer, D.K., 1994. The importance of 

earthquake-induced landslides to long-term 

slope erosion and slope-failure hazards in 

seismically active regions. Geomorphology, 

10(1-4), pp.265-284. 

earthquake-induced 

landslides; erosion; slope 

failure 

  worldwide Earthquake; 

Landslide 

Quant Linear 

regression 

87 M   article Keefer, D.K., 2002. Investigating landslides 

caused by earthquakes–a historical review. 

Surveys in geophysics, 23(6), pp.473-510. 

debris flows; earthquakes; 

ground failure; historical 

landslides; landslides; 

landslide inventories; 

lateral spreads; 

liquefaction; review; rock 

falls; seismic slope 

stability; slope failure 

    Earthquake; 

Landslide 

Quant Linear 

regression 
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TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

88 M   article Klerk, W.J., Winsemius, H.C., van Verseveld, 

W.J., Bakker, A.M.R. and Diermanse, F.L.M., 

2015. The co-incidence of storm surges and 

extreme discharges within the Rhine–Meuse 

Delta. Environmental Research Letters, 10(3), 

p.035005. 

storm surge; flood; statistic 

dependency; model 

association 

Yes Rhine-Meuse delta Storm Surge; 

River Flooding 

Quant Tail 

dependence 

89 M   article Lian, J.J., Xu, K. and Ma, C., 2013. Joint 

impact of rainfall and tidal level on flood risk 

in a coastal city with a complex river network: 

a case study of Fuzhou City, China. 

Hydrology and Earth System Sciences, 17(2), 

p.679. 

flood risk; urban area; 

tidal; joint probabilities; 

copulas 

  China River Flooding Quant Extreme value 

copula 

90 M   article Ma, T., Li, C., Lu, Z. and Bao, Q., 2015. 

Rainfall intensity–duration thresholds for the 

initiation of landslides in Zhejiang Province, 

China. Geomorphology, 245, pp.193-206. 

shallow landslides; rainfall 

thresholds; terrain slope; 

soil properties; kriging 

method 

  Zhejiang Province, 

China 

Extreme Rainfall 

; Landslide 

Quant Linear 

regression 

91 T+M MH article Ming, X., Xu, W., Li, Y., Du, J., Liu, B. and 

Shi, P., 2015. Quant multi-hazard risk 

assessment with vulnerability surface and 

hazard joint return period. Stochastic 

environmental research and risk assessment, 

29(1), pp.35-44. 

joint probability 

distribution; multi-hazard; 

risk; vulnerability surface; 

copula 

Yes China River Flooding; 

Extreme Wind; 

Cold Wave; 

Drought 

Quant Extreme value 

copula 

92 M   report Phan, L.T., Simiu, E., McInerney, M.A., 

Taylor, A.A., Glahn, B. and Powell, M.D., 

2007. Methodology for development of design 

criteria for joint hurricane wind speed and 

storm surge events: Proof of concept. NIST 

Technical Note, 1482. 

    USA   Quant Hydrodynamic 

model 
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TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

93 M   article Piepgrass, M.V., Krider, E.P. and Moore, 

C.B., 1982. Lightning and surface rainfall 

during Florida thunderstorms. Journal of 

Geophysical Research: Oceans, 87(C13), 

pp.11193-11201. 

electrical phenomena; H₂O 

in the atmosphere 

(humidity);storms 

Yes Florida   Quant Linear 

regression 

94 M   article Silvestro, F., Rebora, N., Rossi, L., Dolia, D., 

Gabellani, S., Pignone, F., Trasforini, E., 

Rudari, R., Angeli, S.D. and Masciulli, C., 

2016. What if the 25 October 2011 event that 

struck Cinque Terre (Liguria) had happened in 

Genoa, Italy? Flooding scenarios, hazard 

mapping and damage estimation. Natural 

Hazards and Earth System Sciences, 16(8), 

pp.1737-1753. 

mapping; flash-flood   Liguria, Italy River Flooding Quant Atmosheric 

model; 

Hydrological 

model; 

Hydrodynamic 

model 

95 M 
 

article Suppasri, A., Imamura, F. and Koshimura, S., 

2012. Tsunamigenic ratio of the Pacific Ocean 

earthquakes and a proposal for a tsunami 

index. Natural Hazards and Earth System 

Sciences, 12(1), p.175. 

tsunami; earthquake; ratio   Pacific Ocean Tsunami Quant Power 

regression 

(non-linear 

regression) 

96 M   article Svensson, C. and Jones, D.A., 2004. 

Dependence between sea surge, river flow and 

precipitation in south and west Britain. 

Hydrology and Earth System Sciences 

Discussions, 8(5), pp.973-992. 

Britain; dependence; sea 

surge; river flow; 

precipitation; mid-latitude 

cyclone; seasonality; time 

lag 

Yes South and west 

Britain 

Storm Surge; 

River Flooding; 

Extreme Rainfall 

Quant Tail 

dependence 

97 T+M C article van den Hurk, B., van Meijgaard, E., de Valk, 

P., van Heeringen, K.J. and Gooijer, J., 2015. 

Analysis of a compounding surge and 

precipitation event in the Netherlands. 

Environmental Research Letters, 10(3), 

p.035001. 

compounding events; 

coastal water management; 

flooding 

Yes Netherland Storm Surge; 

Extreme Rainfall 

Quant Atmospheric 

model; 

Hydrological 

model; 

Polynomial 

Regression 
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TS Ref 
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Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

98 M   article Yang, X.C. and Zhang, Q.H., 2013. Joint 

probability distribution of winds and waves 

from wave simulation of 20 years (1989-2008) 

in Bohai Bay. Water Science and Engineering, 

6(3), pp.296-307. 

wind speed; wave 

simulation; joint 

probability distribution; 

copula function. 

Yes Bohai Bay (China) Extreme Wind ; 

Extreme Wave 

Quant Extreme value 

copula 

99 M   article Zheng, F., Westra, S., Leonard, M. and Sisson, 

S.A., 2014. Modeling dependence between 

extreme rainfall and storm surge to estimate 

coastal flooding risk. Water Resources 

Research, 50(3), pp.2050-2071. 

dependence; coastal flood 

risk; extreme values 

  Australia Storm Surge; 

Extreme Rainfall 

Quant Extreme value 

copula; 

Conditional 

model 

100 M   article Tinti, S., Pagnoni, G. and Piatanesi, A., 2003. 

Simulation of tsunamis induced by volcanic 

activity in the Gulf of Naples (Italy). Natural 

Hazards and Earth System Science, 3(5), 

pp.311-320. 

tsunami; volcanic eruption   Gulf of Naples Volcanic 

Eruption; 

Tsunami 

Quant Hydrodynamic 

model 

101 M   article Mazas, F. and Hamm, L., 2017. An event-

based approach for extreme joint probabilities 

of waves and sea levels. Coastal Engineering, 

122, pp.44-59. 

joint probabilities; event; 

extreme value copula; 

upper tail dependence 

coefficient; wave height; 

sea level; chi-plot 

  Britanny Storm Surge; 

Extreme Wave 

Quant Extreme value 

copula 

102 M   article Iordanidou, V., Koutroulis, A.G. and Tsanis, 

I.K., 2016. Investigating the relationship of 

lightning activity and rainfall: A case study for 

Crete Island. Atmospheric Research, 172, 

pp.16-27. 

 

correlation; clustering; 

precipitation; lightning 

Yes Crete, Greece Lightning; 

Extreme Rainfall 

Quant Spatio-

temporal 

correlation; 

Linear 

regression 

103 M   article Geist, E.L., Lynett, P.J. and Chaytor, J.D., 

2009. Hydrodynamic modeling of tsunamis 

from the Currituck landslide. Marine Geology, 

264(1-2), pp.41-52. 

hydrodynamic; landslide; 

numerical model; runup; 

sensitivity analysis; 

tsunami 

  North Carolina; USA   Quant Hydrodynamic 

model 
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TS Ref 
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Citation Keywords Inter-
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Semi-

quant/ 
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Modelling 

method 

104 M   article Pelinovsky, E. and Poplavsky, A., 1996. 

Simplified model of tsunami generation by 

submarine landslides. Physics and Chemistry 

of the Earth, 21(1-2), pp.13-17. 

        Quant Hydrodynamic 

model 

105 M   article Dutykh, D., Poncet, R. and Dias, F., 2011. The 

VOLNA code for the numerical modeling of 

tsunami waves: Generation, propagation and 

inundation. European Journal of Mechanics-

B/Fluids, 30(6), pp.598-615. 

finite volumes; run-down; 

run-up; shallow water 

equations; tsunami 

generation; tsunami waves 

  Japan   Quant Hydrodynamic 

model 

106 M   article Masina, M., Lamberti, A. and Archetti, R., 

2015. Coastal flooding: A copula based 

approach for estimating the joint probability of 

water levels and waves. Coastal Engineering, 

97, pp.37-52. 

coastal flooding; copula; 

probability of failure; 

Ravenna (Italy); storm 

surge; wave runup 

  Italy   Quant Extreme value 

copula; Rank 

correlation 

coefficients 

107 M   article Trepanier, J.C., Needham, H.F., Elsner, J.B. 

and Jagger, T.H., 2015. Combining surge and 

wind risk from hurricanes using a copula 

model: an example from Galveston, Texas. 

The Professional Geographer, 67(1), pp.52-61. 

copula; extreme winds; 

hurricanes; risk; storm 

surge 

  Texas; USA   Quant Archimedean 

copula; Rank 

correlation 

coefficients 

108 M   article Tolman, H.L. and Chalikov, D., 1996. Source 

terms in a third-generation wind wave model. 

Journal of Physical Oceanography, 26(11), 

pp.2497-2518. 

        Quant Hydrodynamic 

model 

109 M   article Booij, N., Holthuijsen, L.H. and Ris, R.C., 

1997. The" SWAN" wave model for shallow 

water. In Coastal Engineering 1996 (pp. 668-

676). 

    Australia   Quant Hydrodynamic 

model 



Appendix A: Multi-hazard Database 

Page 254 

ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

110 M   article Quecedo, M., Pastor, M. and Herreros, M.I., 

2004. Numerical modelling of impulse wave 

generated by fast landslides. International 

journal for numerical methods in engineering, 

59(12), pp.1633-1656. 

characteristic based 

galerkin; fractional step; 

incompressible; level set; 

navier-stokes; non-

newtonian 

  Alaska; USA   Quant Hydrodynamic 

model 

111 M   conference 

proceeding 

Luger, S. and Harris, R.L., 2010, September. 

Modelling tsunami generated by earthquakes 

and submarine slumps using MIKE-21. In 

International MIKE by DHI conference, South 

Africa, Paper (p. P017). 

earthquake; mike 21; 

submarine slump; tsunami 

  Sumatra   Quant Hydrodynamic 

model 

112 M   article Meunier, P., Hovius, N. and Haines, A.J., 

2007. Regional patterns of earthquake‐

triggered landslides and their relation to 

ground motion. Geophysical Research Letters, 

34(20). 

earthquake-triggered; 

landslides; ground motion 

Yes     Quant Linear 

regression 

113 M   article Bunya, S., Dietrich, J.C., Westerink, J.J., 

Ebersole, B.A., Smith, J.M., Atkinson, J.H., 

Jensen, R., Resio, D.T., Luettich, R.A., 

Dawson, C. and Cardone, V.J., 2010. A high-

resolution coupled riverine flow, tide, wind, 

wind wave, and storm surge model for 

southern Louisiana and Mississippi. Part I: 

Model development and validation. Monthly 

weather review, 138(2), pp.345-377. 

coupled model; 

hydrodynamic model; 

hurricane 

  Gulf of Mexico   Quant Hydrodynamic 

(wave) model; 

Atmospheric 

model 

114 M   article Price, C. and Federmesser, B., 2006. 

Lightning‐rainfall relationships in 

Mediterranean winter thunderstorms. 

Geophysical research letters, 33(7). 

lightning; rainfall; 

relationship; thunderstorm 

Yes South Mediterranean   Quant Linear 

Regression 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

115 M   article Koutroulis, A.G., Grillakis, M.G., Tsanis, I.K., 

Kotroni, V. and Lagouvardos, K., 2012. 

Lightning activity, rainfall and flash flooding–

occasional or interrelated events? A case study 

in the island of Crete. Natural Hazards and 

Earth System Sciences, 12(4), pp.881-891. 

Crete; flash flood; 

interrelated events; rainfall; 

lightning 

Yes South Mediterranean   Quant Linear 

Regression 

116 M   article Hawkes, P.J., Gouldby, B.P., Tawn, J.A. and 

Owen, M.W., 2002. The joint probability of 

waves and water levels in coastal engineering 

design. Journal of hydraulic research, 40(3), 

pp.241-251. 

sea surge; joint probability; 

extreme; engineering 

      Quant Gaussian 

Copula 

117 M   article Dutfoy, A., Parey, S. and Roche, N., 2014. 

Multivariate extreme value theory-A tutorial 

with applications to hydrology and 

meteorology. Dependence Modeling, 2(1). 

multivariate extreme value 

theory; joint extreme 

hazards; asymptotic 

independence 

  France   Quant Joint tail model 

118 M   article Ledford, A.W. and Tawn, J.A., 1997. 

Modelling dependence within joint tail 

regions. Journal of the Royal Statistical 

Society: Series B (Statistical Methodology), 

59(2), pp.475-499. 

coefficient of tail 

dependence; 

componentwise maxima; 

extreme value theory; 

maximum likelihood; non-

homogeneous Poisson 

process; asymptotic 

independence 

  United Kingdom   Quant Joint tail model 

119 T+M MH article Bout, B., Lombardo, L., van Westen, C.J. and 

Jetten, V.G., 2018. Integration of two-phase 

solid fluid equations in a catchment model for 

flashfloods, debris flows and shallow slope 

failures. Environmental Modelling & 

Software, 105, pp.1-16. 

debris flow; flash floods; 

openlisem; physically-

based modelling; shallow 

landslides; spatial 

numerical modelling 

Yes Sicilia; Italy River Flooding; 

Landslide 

Quant Hydrodynamic 

model 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

120 T+M C article Kumbier, K., Cabral Carvalho, R., Vafeidis, 

A.T. and Woodroffe, C.D., 2018. Investigating 

compound flooding in an estuary using 

hydrodynamic modelling: a case study from 

the Shoalhaven River, Australia. 

hydrodynamic model; 

compound flooding 

Yes Australia River Flooding; 

Storm Surge 

Quant Hydrodynamic 

model 

121 M   article Yue, S., 2000. The Gumbel logistic model for 

representing a multivariate storm event. 

Advances in Water Resources, 24(2), pp.179-

185. 

conditional distribution; 

Gumbel distribution; joint; 

marginal distribution; 

probability distribution; 

storm amount; storm 

frequency analysis; storm 

peak; bivariate extreme 

value distribution 

  Japan   Quant Multivariate 

extreme value 

model 

(Bivariate 

logistic model) 

122 T+M C article Hao, Z., Hao, F., Singh, V.P. and Ouyang, W., 

2017. Quant risk assessment of the effects of 

drought on extreme temperature in eastern 

China. Journal of Geophysical Research: 

Atmospheres, 122(17), pp.9050-9059. 

copula framework; drought 

impact; hot extremes; 

conditional probability of 

extreme temperature; 

drought and wet 

conditions; impact 

Yes China Extreme Hot 

Temperature; 

Drought 

Quant Gaussian 

copula 

123 M   conference 

proceeding 

Mueller, B. and Seneviratne, S.I., 2012. Hot 

days induced by precipitation deficits at the 

global scale. Proceedings of the national 

academy of sciences, 109(31), pp.12398-

12403. 

hot day prediction; soil 

moisture temperature 

coupling; standardized 

precipitation index; 

temperature extremes 

Yes Globe   Quant Quantile 

regression 

124 M   article Meng, L. and Shen, Y., 2014. On the 

relationship of soil moisture and extreme 

temperatures in East China. Earth Interactions, 

18(1), pp.1-20. 

soil moisture; heat waves; 

east china 

Yes China   Quant Quantile 

regression 



Appendix A: Multi-hazard Database 

Page 257 

ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

125 M   article Dong, S., Gao, J., Li, X., Wei, Y. and Wang, 

L., 2015. A storm surge intensity classification 

based on extreme water level and concomitant 

wave height. Journal of Ocean University of 

China, 14(2), pp.237-244. 

classification; distribution; 

intensity; joint return 

period; Poisson bi-variable 

Gumbel logistic; Poisson 

bi-variable log-normal 

distribution; storm surge 

  China   Quant Multivariate 

extreme value 

model 

126 M   article Rueda, A., Camus, P., Tomás, A., Vitousek, S. 

and Méndez, F.J., 2016. A multivariate 

extreme wave and storm surge climate 

emulator based on weather patterns. Ocean 

Modelling, 104, pp.242-251. 

joint probability; extremes; 

statistical downscaling 

  Spain   Quant Gaussian 

copula 

127 M   article Bengtsson, L., 2016. Probability of combined 

high sea levels and large rains in Malmö, 

Sweden, southern Öresund. Hydrological 

Processes, 30(18), pp.3172-3183. 

extreme events; conditional 

probability; frank’s copula; 

seasonal distribution; urban 

environment 

Yes Sweden   Quant Archimedean 

copula; 

Conditional 

model 

128 M   article Benestad, R.E. and Haugen, J.E., 2007. On 

complex extremes: flood hazards and 

combined high spring-time precipitation and 

temperature in Norway. Climatic Change, 

85(3-4), pp.381-406. 

extreme; joint probability; 

precipitation; flood 

Yes Norway   Quant Empirical 

copula 

129 T+M C article Tencer, B., Weaver, A. and Zwiers, F., 2014. 

Joint occurrence of daily temperature and 

precipitation extreme events over Canada. 

Journal of Applied Meteorology and 

Climatology, 53(9), pp.2148-2162. 

extreme; joint occurrence; 

temperature; precipitation 

Yes Canada   Quant One tail chi 

square test 

130 M   article Hawkes, P.J., 2008. Joint probability analysis 

for estimation of extremes. Journal of 

Hydraulic Research, 46(S2), pp.246-256. 

coast; dependence; 

extremes; flood risk; joint 

probability; river 

  South England; 

United Kingdom 

  Quant Multivariate 

extreme value 

model 



Appendix A: Multi-hazard Database 

Page 258 

ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

131 M   article Coles, S.G. and Tawn, J.A., 1994. Statistical 

methods for multivariate extremes: an 

application to structural design. Applied 

Statistics, pp.1-48. 

concomitants; extreme 

value theory; generalized 

extreme value distribution; 

generalized pareto 

distribution; multivariate 

extreme value distribution; 

multivariate ordering; point 

processes; reliability; sea-

levels; waves 

  South England; 

United Kingdom 

  Quant Multivariate 

extreme value 

model 

132 M   article Zheng, F., Leonard, M. and Westra, S., 2017. 

Application of the design variable method to 

estimate coastal flood risk. Journal of Flood 

Risk Management, 10(4), pp.522-534. 

change; climate; flood risk; 

joint probability; 

uncertainty analysis 

  Australia   Quant Multivariate 

extreme value 

model; point 

process 

133 T+M C article Zheng, F., Westra, S. and Sisson, S.A., 2013. 

Quantifying the dependence between extreme 

rainfall and storm surge in the coastal zone. 

Journal of Hydrology, 505, pp.172-187. 

extreme rainfall; extreme 

storm surge; dependence; 

flood risk 

Yes Australia   Quant Tail 

dependence 

134 M   article Torres, J.M., Bass, B., Irza, N., Fang, Z., Proft, 

J., Dawson, C., Kiani, M. and Bedient, P., 

2015. Characterizing the hydraulic interactions 

of hurricane storm surge and rainfall–runoff 

for the Houston–Galveston region. Coastal 

Engineering, 106, pp.7-19. 

hurricane; rainfall runoff; 

storm surge; barrier; 

distributed inland 

hydrology; unsteady 

riverine modelling; 

swan+adcirc 

Yes USA   Quant Hydrological 

model; 

Hydrodynamic 

model 

135 M   article  Xu, K., Ma, C., Lian, J. and Bin, L., 2014. 

Joint probability analysis of extreme 

precipitation and storm tide in a coastal city 

under changing environment. PloS one, 9(10), 

p.e109341. 

joint probability; extreme; 

precipitation; coastal 

  China   Quant Archimedean 

copula 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

136 T+M C article Petroliagkis, T.I., 2018. Estimations of 

statistical dependence as joint return period 

modulator of compound events–Part 1: Storm 

surge and wave height. Natural Hazards and 

Earth System Sciences, 18(7), pp.1937-1955. 

dependence; joint return 

period; compound event 

Yes Europe Storm Surge; 

Extreme Wave 

Quant Tail 

dependence; 

Linear 

correlation 

137 M   article Silva-Araya, W.F., Santiago-Collazo, F.L., 

Gonzalez-Lopez, J. and Maldonado-

Maldonado, J., 2018. Dynamic modeling of 

surface runoff and storm surge during 

hurricane and tropical storm events. 

Hydrology, 5(1), p.13. 

tropical storm modelling; 

two-dimensional 

hydrologic models; ocean 

circulation models; coastal 

flooding; coastal hazards 

  USA   Quant Hydrological 

model; 

Hydrodynamic 

model 

138 I   report Decker, K. and Brinkman, H., 2015. List of 

External Hazards to be Considered in 

ASAMPSA_E. 

            

139 M   article Wang, J., Gao, W., Xu, S. and Yu, L., 2012. 

Evaluation of the combined risk of sea level 

rise, land subsidence, and storm surges on the 

coastal areas of Shanghai, China. Climatic 

change, 115(3-4), pp.537-558. 

combined risk; coastal 

area; subsidence; storm 

surge; china 

  China   Quant Hydrodynamic 

model 

140 T+M C article Serinaldi, F., 2016. Can we tell more than we 

can know? The limits of bivariate drought 

analyses in the United States. Stochastic 

environmental research and risk assessment, 

30(6), pp.1691-1704. 

bivariate frequency 

analysis; joint return 

periods; copula; 

uncertainty; joint extreme 

event; drought; 

temperature; precipitation 

deficit; moisture conditions 

Yes USA Drought; Extreme 

Temperature 

Quant Gaussian 

copula 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

141 M   article Couasnon, Anaïs, Antonia Sebastian, and 

Oswaldo Morales-Nápoles. "A Copula-Based 

Bayesian Network for Modeling Compound 

Flood Hazard from Riverine and Coastal 

Interactions at the Catchment Scale: An 

Application to the Houston Ship Channel, 

Texas." Water 10, no. 9 (2018): 1190. 

flood risk; copula; 

compound events; 

multivariate; storm surge; 

spatial dependence; 

Bayesian network 

      Quant Non Parametric 

Bayesian 

Network, 

Gaussian 

Copula 

142 M   article Ward, P.J., Couasnon, A., Eilander, D., Haigh, 

I.D., Hendry, A., Muis, S., Veldkamp, T.I., 

Winsemius, H.C. and Wahl, T., 2018. 

Dependence between high sea-level and high 

river discharge increases flood hazard in 

global deltas and estuaries. Environmental 

Research Letters, 13(8), p.084012. 

coastal flooding; 

compound flood; flood; 

flood risk; river flooding 

      Quant Rank 

correlation; 

extreme value 

copula; 

archimedean 

copula 

143 M   article Berg, P., Moseley, C. and Haerter, J.O., 2013. 

Strong increase in convective precipitation in 

response to higher temperatures. Nature 

Geoscience, 6(3), p.181. 

        Quant Linear 

regression 

144 M   article Sadegh, M., Ragno, E. and AghaKouchak, A., 

2017. Multivariate C opula A nalysis T oolbox 

(MvCAT): Describing dependence and 

underlying uncertainty using a B ayesian 

framework. Water Resources Research, 53(6), 

pp.5166-5183. 

        Quant Archimedean 

Copula; 

Extreme value 

Copula; 

Gaussian 

Copula 

145 M   report Cooley, D., Thibaud, E., Castillo, F. and 

Wehner, M.F., 2017. A Nonparametric 

Method for Producing Isolines of Bivariate 

Exceedance Probabilities. arXiv preprint 

arXiv:1710.05248. 

asymptotic independence; 

extreme values; hidden 

regular variation; 

multivariate; regular 

variation 

      Quant Tail 

dependence; 

Multivariate 

extreme model 
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ID Sub- 

group 

TS Ref 

type 

Citation Keywords Inter-

relation  

Studied Area Hazards Quant / 

Semi-

quant/ 

Qual 

Modelling 

method 

146 M 
 

article Malamud, B.D., Turcotte, D.L., Guzzetti, F. 

and Reichenbach, P., 2004. Landslide 

inventories and their statistical properties. 

Earth Surface Processes and Landforms, 

29(6), pp.687-711. 

landslides; earthquakes; 

erosion; natural hazards; 

frequency-size statistics; 

intensity scale 

    Extreme Rainfall; 

Earthquake; 

Snow Melt; 

Landslide 

Quant Linear 

regression 
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Appendix B: Hazard Interrelations Database 

This appendix is a database of 70 references related to Chapter 2 and consists of the following: 

• Table B1. Interrelations Database Structure. Detailed metadata information describing 

Table B2 

• Table B2. Interrelations Database. A subset of 70 of the references from Table A1 

consisting of 73 rows of information (due to different hazard combinations for two 

references) with 14 attributes (columns) for each reference, including citation 

information, studied region, hazard A and B type and category in the interrelationship 

that is quantified, modelling approach, family and model, interrelationship type. 
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Table B1: Interrelations Database Structure. Detailed metadata information describing Table B2. 

Attributes Definition 

Reference    

  

  

  

  

Publication Year 

Studied Area 

Hazard A 

Hazard B 

Model approach Empirical:  Experience-based equations or distributions representing the 

behaviour of the interaction between two (or more) hazards. 

 

Mechanistic: based on physical process and mechanism that rule the 

considered system operation. 

 

Stochastic: based on samples of different variables with random behaviour not 

dependent on the previous state of those variable (the range of data can be 

bounded) 

Model subgroup Multivariate model; Copula; Dependence measure; Regression; Conceptual 

model; Physical model 

Model Logistic regression; Hydrodynamic model; Extreme value copula; Vine copula; 

Linear correlation; Rank correlation; Hydrological model; Archimedean 

copula; Climate model; Tail dependence; Power regression; Polynomial 

regression; Joint tail model; Multivariate extreme model; Gaussian copula; 

Quantile regression; Conditional extreme model; Empirical copula. 

Interrelation type Triggering; Change condition; Compound; Independent; Mutually exclusive 
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Table B2: Interrelations Database. A subset of 70 of the references from Table A1 consisting of 73 rows of information (due to different hazard combinations for two 

references) with 14 attributes (columns) for each reference, including citation information, studied region, hazard A and B type and category in the interrelationship that is 

quantified, modelling approach, family and model, interrelationship type. A detailed description of each column is given in Table A1. 

Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Benestad, R.E. and Haugen, J.E., 2007. On 

complex extremes: flood hazards and combined 

high spring-time precipitation and temperature in 

Norway. Climatic Change, 85(3-4), pp.381-406. 

2007 Norway Rainfall Extreme 

Temperature 

Empirical Copula Empirical Copula Compound 

Bengtsson, L., 2016. Probability of combined 

high sea levels and large rains in Malmö, 

Sweden, southern Öresund. Hydrological 

Processes, 30(18), pp.3172-3183. 

2016 Sweden Storm Surge Extreme 

Rainfall 

Stochastic Copula; 

Multivariate 

Model 

Archimedean 

Copula; 

Conditional 

Model 

Mutually 

Exclusive 

Berg, P., Moseley, C. and Haerter, J.O., 2013. 

Strong increase in convective precipitation in 

response to higher temperatures. Nature 

Geoscience, 6(3), p.181. 

2013 Germany Temperature Extreme 

Rainfall 

Empirical Regression Linear Regression Compound 

Bevacqua, E., Maraun, D., Hobæk Haff, I., 

Widmann, M. and Vrac, M., 2017. Multivariate 

statistical modelling of compound events via 

pair-copula constructions: analysis of floods in 

Ravenna (Italy). Hydrology and Earth System 

Sciences, 21(6), pp.2701-2723. 

2017 Italy Storm Surge River 

Flooding 

Stochastic Copula Vine Copula Compound 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Booij, N., Holthuijsen, L.H. and Ris, R.C., 1997. 

The" SWAN" wave model for shallow water. In 

Coastal Engineering 1996 (pp. 668-676). 

1997 Australia Extreme 

Wind 

Extreme 

Wave Height 

Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Triggering 

Bout, B., Lombardo, L., van Westen, C.J. and 

Jetten, V.G., 2018. Integration of two-phase 

solid fluid equations in a catchment model for 

flashfloods, debris flows and shallow slope 

failures. Environmental Modelling & Software, 

105, pp.1-16. 

2018 Sicilia Extreme 

Rainfall 

Landslide Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Triggering 

Bunya, S., Dietrich, J.C., Westerink, J.J., 

Ebersole, B.A., Smith, J.M., Atkinson, J.H., 

Jensen, R., Resio, D.T., Luettich, R.A., Dawson, 

C. and Cardone, V.J., 2010. A high-resolution 

coupled riverine flow, tide, wind, wind wave, 

and storm surge model for southern Louisiana 

and Mississippi. Part I: Model development and 

validation. Monthly weather review, 138(2), 

pp.345-377. 

2010 Gulf Of 

Mexico 

Extreme 

Wind 

Storm Surge; 

Extreme 

Wave 

Mechanistic Physical 

Model 

Hydrodynamic 

(Wave) Model; 

Atmospheric 

Model 

Compound; 

Triggering 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Caine, N., 1980. The rainfall intensity: duration 

control of shallow landslides and debris flows. 

Geografiska Annaler. Series A. Physical 

Geography, pp.23-27. 

1980 World Extreme 

Rainfall 

Landslide Empirical Regression Linear Regression Triggering 

Carey, L.D., Rutledge, S.A. and Petersen, W.A., 

2003. The relationship between severe storm 

reports and cloud-to-ground lightning polarity in 

the contiguous United States from 1989 to 1998. 

Monthly weather review, 131(7), pp.1211-1228. 

2003 USA Lightning Hail Empirical Regression Linear Regression Compound 

Carey, L.D., Rutledge, S.A. and Petersen, W.A., 

2003. The relationship between severe storm 

reports and cloud-to-ground lightning polarity in 

the contiguous United States from 1989 to 1998. 

Monthly weather review, 131(7), pp.1211-1228. 

2004 USA Lightning Extreme 

Rainfall 

Empirical Regression Linear Regression Compound 

Carey, L.D., Rutledge, S.A. and Petersen, W.A., 

2003. The relationship between severe storm 

reports and cloud-to-ground lightning polarity in 

the contiguous United States from 1989 to 1998. 

Monthly weather review, 131(7), pp.1211-1228. 

2005 USA Lightning Tornado Empirical Regression Linear Regression Compound 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Catane, S.G., Abon, C.C., Saturay, R.M., 

Mendoza, E.P.P. and Futalan, K.M., 2012. 

Landslide-amplified flash floods—the June 2008 

Panay Island flooding, Philippines. 

Geomorphology, 169, pp.55-63. 

2012 Philippines Landslide River 

Flooding 

Mechanistic Conceptual 

Model 

Hydrological 

Model 

Change 

Condition 

Coles, S.G. and Tawn, J.A., 1994. Statistical 

methods for multivariate extremes: an 

application to structural design. Applied 

Statistics, pp.1-48. 

1994 South England Storm Surge Extreme 

Wave Height 

Stochastic Multivariate 

Model 

Joint Tail Model Compound 

Cooley, D., Thibaud, E., Castillo, F. and 

Wehner, M.F., 2017. A Nonparametric Method 

for Producing Isolines of Bivariate Exceedance 

Probabilities. arXiv preprint arXiv:1710.05248. 

2017 USA; Pakistan Extreme 

Wind 

Drought Stochastic; 

Empirical 

Dependence 

Measure; 

Multivariate 

Model 

Tail Dependence; 

Multivariate 

Extreme Model 

Compound 

Costa, J.E. and Schuster, R.L., 1988. The 

formation and failure of natural dams. 

Geological society of America bulletin, 100(7), 

pp.1054-1068. 

1988 World Landslide River 

Flooding 

Empirical Regression Linear Regression Triggering 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Couasnon, Anaïs, Antonia Sebastian, and 

Oswaldo Morales-Nápoles. "A Copula-Based 

Bayesian Network for Modeling Compound 

Flood Hazard from Riverine and Coastal 

Interactions at the Catchment Scale: An 

Application to the Houston Ship Channel, 

Texas." Water 10, no. 9 (2018): 1190. 

2018 USA Storm Surge River 

Flooding 

Stochastic Copula Non Parametric 

Bayesian 

Network, 

Gaussian Copula 

Compound 

Dong, S., Gao, J., Li, X., Wei, Y. and Wang, L., 

2015. A storm surge intensity classification 

based on extreme water level and concomitant 

wave height. Journal of Ocean University of 

China, 14(2), pp.237-244. 

2015 China Storm Surge Extreme 

Wave Height 

Stochastic Multivariate 

Model 

Parametric Model Compound 

Dutfoy, A., Parey, S. and Roche, N., 2014. 

Multivariate extreme value theory-A tutorial 

with applications to hydrology and meteorology. 

Dependence Modeling, 2(1). 

2014 France Extreme 

Temperature 

Extreme Wind Stochastic Multivariate 

Model 

Joint Tail Model Mutually 

Exclusive 

Dutykh, D., Poncet, R. and Dias, F., 2011. The 

VOLNA code for the numerical modeling of 

tsunami waves: Generation, propagation and 

inundation. European Journal of Mechanics-

B/Fluids, 30(6), pp.598-615. 

2011 Japan Earthquake Tsunami Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Triggering 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Fischer, E.M. and Knutti, R., 2013. Robust 

projections of combined humidity and 

temperature extremes. Nature Climate Change, 

3(2), pp.126-130. 

2013 World Extreme 

Temperature 

Drought Mechanistic Physical 

Model 

Climate Model Compound 

Geist, E.L. and Parsons, T., 2006. Probabilistic 

analysis of tsunami hazards. Natural Hazards, 

37(3), pp.277-314. 

2006 North 

American 

Pacific Coast 

Earthquake Tsunami Mechanistic/ 

Stochastic 

Physical 

Model 

Hydrodynamic 

Model 

Triggering 

Geist, E.L., Lynett, P.J. and Chaytor, J.D., 2009. 

Hydrodynamic modeling of tsunamis from the 

Currituck landslide. Marine Geology, 264(1-2), 

pp.41-52. 

2009 North 

Carolina 

Landslide Tsunami Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Triggering 

Glade, T., Crozier, M. and Smith, P., 2000. 

Applying probability determination to refine 

landslide-triggering rainfall thresholds using an 

empirical" Antecedent Daily Rainfall Model". 

Pure and Applied Geophysics, 157(6-8), 

pp.1059-1079. 

2000 New Zealand Extreme 

Rainfall 

Landslide Empirical Regression Logistic 

Regression 

Triggering 

Hao, Z., Hao, F., Singh, V.P. and Ouyang, W., 

2017. Quantitative risk assessment of the effects 

of drought on extreme temperature in eastern 

2017 China Drought Extreme 

Temperature 

Stochastic Copula Gaussian Copula Compound 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

China. Journal of Geophysical Research: 

Atmospheres, 122(17), pp.9050-9059. 

Hawkes, P.J., 2008. Joint probability analysis for 

estimation of extremes. Journal of Hydraulic 

Research, 46(S2), pp.246-256. 

2008 South England Storm Surge Extreme 

Wave Height 

Stochastic Multivariate 

Model 

Parametric Model Compound 

Hawkes, P.J., Gouldby, B.P., Tawn, J.A. and 

Owen, M.W., 2002. The joint probability of 

waves and water levels in coastal engineering 

design. Journal of hydraulic research, 40(3), 

pp.241-251. 

2002   Storm Surge Extreme 

Wave Height 

Stochastic Copula Gaussian Copula Compound 

Iordanidou, V., Koutroulis, A.G. and Tsanis, 

I.K., 2016. Investigating the relationship of 

lightning activity and rainfall: A case study for 

Crete Island. Atmospheric Research, 172, pp.16-

27. 

2016 Crete Lightning Extreme 

Rainfall 

Empirical Regression Spatio-Temporal 

Correlation; 

Linear Regression 

Compound 

Irish, J.L., Resio, D.T. and Ratcliff, J.J., 2008. 

The influence of storm size on hurricane surge. 

Journal of Physical Oceanography, 38(9), 

pp.2003-2013. 

2008 Gulf Of 

Mexico 

Extreme 

Wind 

Storm Surge Mechanistic Physical 

Model 

Atmospheric 

Model 

Triggering 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Johansson, B. and Chen, D., 2003. The influence 

of wind and topography on precipitation 

distribution in Sweden: Statistical analysis and 

modelling. International Journal of Climatology, 

23(12), pp.1523-1535. 

2003 Sweden Extreme 

Wind 

Extreme 

Rainfall 

Empirical Regression Linear Regression Compound 

Keefer, D.K., 1994. The importance of 

earthquake-induced landslides to long-term slope 

erosion and slope-failure hazards in seismically 

active regions. Geomorphology, 10(1-4), pp.265-

284. 

2002 World Earthquake Landslide Empirical Regression Linear Regression Triggering 

Keefer, D.K., 2002. Investigating landslides 

caused by earthquakes–a historical review. 

Surveys in geophysics, 23(6), pp.473-510. 

1994 World Earthquake Landslide Empirical Regression Linear Regression Triggering 

Klerk, W.J., Winsemius, H.C., van Verseveld, 

W.J., Bakker, A.M.R. and Diermanse, F.L.M., 

2015. The co-incidence of storm surges and 

extreme discharges within the Rhine–Meuse 

Delta. Environmental Research Letters, 10(3), 

p.035005. 

2015 Netherland Storm Surge River 

Flooding 

Empirical Dependence 

Measure 

Tail Dependence Compound 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Koutroulis, A.G., Grillakis, M.G., Tsanis, I.K., 

Kotroni, V. and Lagouvardos, K., 2012. 

Lightning activity, rainfall and flash flooding–

occasional or interrelated events? A case study in 

the island of Crete. Natural Hazards and Earth 

System Sciences, 12(4), pp.881-891. 

2013 South 

Mediterranean 

Lightning Extreme 

Rainfall 

Empirical Regression Linear Regression Compound 

Kumbier, K., Cabral Carvalho, R., Vafeidis, A.T. 

and Woodroffe, C.D., 2018. Investigating 

compound flooding in an estuary using 

hydrodynamic modelling: a case study from the 

Shoalhaven River, Australia. 

2018 Australia River 

Flooding 

Storm Surge Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Change 

Condition; 

Compound 

Ledford, A.W. and Tawn, J.A., 1997. Modelling 

dependence within joint tail regions. Journal of 

the Royal Statistical Society: Series B (Statistical 

Methodology), 59(2), pp.475-499. 

1997 United 

Kingdom 

Extreme 

Wind 

Extreme 

Rainfall 

Stochastic Multivariate 

Model 

Joint Tail Model Compound 

Lian, J.J., Xu, K. and Ma, C., 2013. Joint impact 

of rainfall and tidal level on flood risk in a 

coastal city with a complex river network: a case 

study of Fuzhou City, China. Hydrology and 

Earth System Sciences, 17(2), p.679. 

2013 China Tidal Level River 

Flooding 

Stochastic Copula Extreme Value 

Copula 

Change 

Condition 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Luger, S. and Harris, R.L., 2010, September. 

Modelling tsunami generated by earthquakes and 

submarine slumps using MIKE-21. In 

International MIKE by DHI conference, South 

Africa, Paper (p. P017). 

2010 Sumatra Earthquake Tsunami Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Triggering 

Ma, T., Li, C., Lu, Z. and Bao, Q., 2015. Rainfall 

intensity–duration thresholds for the initiation of 

landslides in Zhejiang Province, China. 

Geomorphology, 245, pp.193-206. 

2015 Zhejiang 

Province, 

China 

Extreme 

Rainfall 

Landslide Empirical Regression Linear Regression Triggering 

Malamud, B.D., Turcotte, D.L., Guzzetti, F. and 

Reichenbach, P., 2004. Landslide inventories 

and their statistical properties. Earth Surface 

Processes and Landforms, 29(6), pp.687-711. 

2004   Earthquake Landslide Empirical Regression Linear Regression Triggering 

Masina, M., Lamberti, A. and Archetti, R., 2015. 

Coastal flooding: A copula based approach for 

estimating the joint probability of water levels 

and waves. Coastal Engineering, 97, pp.37-52. 

2015 Italy Storm Surge Extreme 

Wave Height 

Stochastic; 

Empirical 

Copula Extreme Value 

Copula; Rank 

Correlation 

Coefficients 

Compound 

Mazas, F. and Hamm, L., 2017. An event-based 

approach for extreme joint probabilities of waves 

and sea levels. Coastal Engineering, 122, pp.44-

59. 

2017 Britany Extreme 

Wave 

Height 

Storm Surge Stochastic Copula Extreme Value 

Copula 

Compound 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Meng, L. and Shen, Y., 2014. On the relationship 

of soil moisture and extreme temperatures in 

East China. Earth Interactions, 18(1), pp.1-20. 

2014 China Drought Extreme 

Temperature 

Empirical Regression Quantile 

Regression 

Compound 

Meunier, P., Hovius, N. and Haines, A.J., 2007. 

Regional patterns of earthquake‐triggered 

landslides and their relation to ground motion. 

Geophysical Research Letters, 34(20). 

2007   Earthquake Landslide Empirical Regression Linear Regression Triggering 

Ming, X., Xu, W., Li, Y., Du, J., Liu, B. and Shi, 

P., 2015. Quantitative multi-hazard risk 

assessment with vulnerability surface and hazard 

joint return period. Stochastic environmental 

research and risk assessment, 29(1), pp.35-44. 

2015 Yangtse River 

Delta Region 

(YRD), China 

Extreme 

Wind 

Extreme 

Rainfall 

Stochastic Copula Extreme Value 

Copula 

Compound 

Mueller, B. and Seneviratne, S.I., 2012. Hot days 

induced by precipitation deficits at the global 

scale. Proceedings of the national academy of 

sciences, 109(31), pp.12398-12403. 

2012 World Drought Extreme 

Temperature 

Empirical Regression Quantile 

Regression 

Compound 

Pelinovsky, E. and Poplavsky, A., 1996. 

Simplified model of tsunami generation by 

submarine landslides. Physics and Chemistry of 

the Earth, 21(1-2), pp.13-17. 

1996   Landslide Tsunami Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Triggering 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Petroliagkis, T.I., 2018. Estimations of statistical 

dependence as joint return period modulator of 

compound events–Part 1: Storm surge and wave 

height. Natural Hazards and Earth System 

Sciences, 18(7), pp.1937-1955. 

2018 Europe Storm Surge Extreme 

Wave Height 

Empirical Dependence 

Measure 

Tail Dependence; 

Linear 

Correlation 

Compound 

Phan, L.T., Simiu, E., McInerney, M.A., Taylor, 

A.A., Glahn, B. and Powell, M.D., 2007. 

Methodology for development of design criteria 

for joint hurricane wind speed and storm surge 

events: Proof of concept. NIST Technical Note, 

1482. 

2007 Florida Storm Surge Extreme Wind Stochastic 

Input 

Mechanistic 

Physical 

Model 

Hydrodynamic 

Model 

Compound 

Piepgrass, M.V., Krider, E.P. and Moore, C.B., 

1982. Lightning and surface rainfall during 

Florida thunderstorms. Journal of Geophysical 

Research: Oceans, 87(C13), pp.11193-11201. 

1982 Florida Lightning Extreme 

Rainfall 

Empirical Regression Linear Regression Compound 

Price, C. and Federmesser, B., 2006. Lightning‐

rainfall relationships in Mediterranean winter 

thunderstorms. Geophysical research letters, 

33(7). 

2006 South 

Mediterranean 

Lightning Extreme 

Rainfall 

Empirical Regression Linear Regression Compound 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Quecedo, M., Pastor, M. and Herreros, M.I., 

2004. Numerical modelling of impulse wave 

generated by fast landslides. International journal 

for numerical methods in engineering, 59(12), 

pp.1633-1656. 

2004 Alaska Landslide Tsunami Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Triggering 

Rueda, A., Camus, P., Tomás, A., Vitousek, S. 

and Méndez, F.J., 2016. A multivariate extreme 

wave and storm surge climate emulator based on 

weather patterns. Ocean Modelling, 104, pp.242-

251. 

2016 Spain Storm Surge Extreme 

Wave Height 

Stochastic Copula Gaussian Copula Compound 

Sadegh, M., Ragno, E. and AghaKouchak, A., 

2017. Multivariate C opula A nalysis T oolbox 

(MvCAT): Describing dependence and 

underlying uncertainty using a B ayesian 

framework. Water Resources Research, 53(6), 

pp.5166-5183. 

2017 USA Extreme 

Low 

Precipitation 

Soil Moisture Stochastic Copula Archimedean 

Copula; Extreme 

Value Copula; 

Gaussian Copula 

Compound 

Serinaldi, F., 2016. Can we tell more than we 

can know? The limits of bivariate drought 

analyses in the United States. Stochastic 

environmental research and risk assessment, 

30(6), pp.1691-1704. 

2016 USA Drought Extreme 

Temperature 

Stochastic Copula Gaussian Copula Compound 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Silva-Araya, W.F., Santiago-Collazo, F.L., 

Gonzalez-Lopez, J. and Maldonado-Maldonado, 

J., 2018. Dynamic modeling of surface runoff 

and storm surge during hurricane and tropical 

storm events. Hydrology, 5(1), p.13. 

2018 USA Storm Surge River 

Flooding 

Mechanistic Physical 

Model 

Hydrological 

Model; 

Hydrodynamic 

Model 

Compound 

Silvestro, F., Rebora, N., Rossi, L., Dolia, D., 

Gabellani, S., Pignone, F., Trasforini, E., Rudari, 

R., Angeli, S.D. and Masciulli, C., 2016. What if 

the 25 October 2011 event that struck Cinque 

Terre (Liguria) had happened in Genoa, Italy? 

Flooding scenarios, hazard mapping and damage 

estimation. Natural Hazards and Earth System 

Sciences, 16(8), pp.1737-1753. 

2016 Liguria, Italy Extreme 

Rainfall 

River 

Flooding 

Mechanistic Physical 

Model 

Atmosheric 

Model; 

Hydrological 

Model; 

Hydrodynamic 

Model 

Triggering 

Suppasri, A., Imamura, F. and Koshimura, S., 

2012. Tsunamigenic ratio of the Pacific Ocean 

earthquakes and a proposal for a tsunami index. 

Natural Hazards and Earth System Sciences, 

12(1), p.175. 

2012 Pacific Ocean Earthquake Tsunami Empirical Regression Power Regression 

(Non-Linear 

Regression) 

Triggering 

Svensson, C. and Jones, D.A., 2004. Dependence 

between Storm surge, river flow and 

precipitation in south and west Britain. 

2004 South And 

West Britain 

Storm Surge River 

Flooding 

Empirical Dependence 

Measure 

Tail Dependence Compound 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Hydrology and Earth System Sciences 

Discussions, 8(5), pp.973-992. 

Tencer, B., Weaver, A. and Zwiers, F., 2014. 

Joint occurrence of daily temperature and 

precipitation extreme events over Canada. 

Journal of Applied Meteorology and 

Climatology, 53(9), pp.2148-2162. 

2014 Canada Rainfall Extreme 

Temperature 

Empirical Test One Tail Chi 

Square Test 

Variable 

Tinti, S., Pagnoni, G. and Piatanesi, A., 2003. 

Simulation of tsunamis induced by volcanic 

activity in the Gulf of Naples (Italy). Natural 

Hazards and Earth System Science, 3(5), pp.311-

320. 

2003 Gulf Of 

Naples 

Volcanic 

Eruption 

Tsunami Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Triggering 

Tolman, H.L. and Chalikov, D., 1996. Source 

terms in a third-generation wind wave model. 

Journal of Physical Oceanography, 26(11), 

pp.2497-2518. 

1996   Extreme 

Wind 

Extreme 

Wave Height 

Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Triggering 

Torres, J.M., Bass, B., Irza, N., Fang, Z., Proft, 

J., Dawson, C., Kiani, M. and Bedient, P., 2015. 

Characterizing the hydraulic interactions of 

hurricane storm surge and rainfall–runoff for the 

2015 USA Storm Surge River 

Flooding 

Mechanistic Physical 

Model 

Hydrological 

Model; 

Hydrodynamic 

Model 

Compound 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Houston–Galveston region. Coastal Engineering, 

106, pp.7-19. 

Trepanier, J.C., Needham, H.F., Elsner, J.B. and 

Jagger, T.H., 2015. Combining surge and wind 

risk from hurricanes using a copula model: an 

example from Galveston, Texas. The 

Professional Geographer, 67(1), pp.52-61. 

2015 Texas Storm Surge Extreme Wind Stochastic; 

Empirical 

Copula Archimedean 

Copula; Rank 

Correlation 

Coefficients 

Compound 

van den Hurk, B., van Meijgaard, E., de Valk, P., 

van Heeringen, K.J. and Gooijer, J., 2015. 

Analysis of a compounding surge and 

precipitation event in the Netherlands. 

Environmental Research Letters, 10(3), 

p.035001. 

2015 Netherland Storm Surge River 

Flooding 

Mechanistic Physical 

Model 

Atmospheric 

Model; 

Hydrological 

Model 

Compound 

van den Hurk, B., van Meijgaard, E., de Valk, P., 

van Heeringen, K.J. and Gooijer, J., 2015. 

Analysis of a compounding surge and 

precipitation event in the Netherlands. 

Environmental Research Letters, 10(3), 

p.035001. 

2015 Netherland Extreme 

Wind 

Storm Surge Empirical Regression Polynomial 

Regression 

Triggering 
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Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Wang, J., Gao, W., Xu, S. and Yu, L., 2012. 

Evaluation of the combined risk of sea level rise, 

land subsidence, and storm surges on the coastal 

areas of Shanghai, China. Climatic change, 

115(3-4), pp.537-558. 

2012 China Land 

Subsidience 

Storm Surge Mechanistic Physical 

Model 

Hydrodynamic 

Model 

Independence 

Ward, P.J., Couasnon, A., Eilander, D., Haigh, 

I.D., Hendry, A., Muis, S., Veldkamp, T.I., 

Winsemius, H.C. and Wahl, T., 2018. 

Dependence between high sea-level and high 

river discharge increases flood hazard in global 

deltas and estuaries. Environmental Research 

Letters, 13(8), p.084012. 

2018 World Storm Surge River 

Flooding 

Empirical; 

Stochastic 

Dependence 

Measure; 

Copula 

Rank Correlation; 

Extreme Value 

Copula; 

Archimedean 

Copula 

Compound 

Xu, K., Ma, C., Lian, J. and Bin, L., 2014. Joint 

probability analysis of extreme precipitation and 

storm tide in a coastal city under changing 

environment. PloS one, 9(10), p.e109341. 

2014 China Storm Surge Extreme 

Rainfall 

Stochastic Copula Archimedean 

Copula 

Compound 

Yang, X.C. and Zhang, Q.H., 2013. Joint 

probability distribution of winds and waves from 

wave simulation of 20 years (1989-2008) in 

Bohai Bay. Water Science and Engineering, 

6(3), pp.296-307. 

2013 Bohai Bay 

(China) 

Extreme 

Wind 

Extreme 

Wave Height 

Stochastic Copula Extreme Value 

Copula 

Triggering 



Appendix B: Hazard Interrelations Database 

Page 281 

Reference Year Studied Area Hazard A Hazard B model 

approach 

Model 

subgroup 

Model Interrelation 

type 

Yue, S., 2000. The Gumbel logistic model for 

representing a multivariate storm event. 

Advances in Water Resources, 24(2), pp.179-

185. 

2000 Tokushima Extreme 

Rainfall A 

(Storm 

Peak) 

Extreme 

Rainfall B 

(Storm 

Amount) 

Stochastic Multivariate 

Model 

Parametric Model 

(Bivariate 

Logistic Model) 

Compound 

Zheng, F., Leonard, M. and Westra, S., 2017. 

Application of the design variable method to 

estimate coastal flood risk. Journal of Flood Risk 

Management, 10(4), pp.522-534. 

2017 Australia Storm Surge Extreme 

Rainfall 

Stochastic Multivariate 

Model 

Parametric 

Model; Point 

Process 

Compound 

Zheng, F., Westra, S. and Sisson, S.A., 2013. 

Quantifying the dependence between extreme 

rainfall and storm surge in the coastal zone. 

Journal of Hydrology, 505, pp.172-187. 

2013 Australia Storm Surge Extreme 

Rainfall 

Empirical Dependence 

Measure 

Tail Dependence Compound 

Zheng, F., Westra, S., Leonard, M. and Sisson, 

S.A., 2014. Modeling dependence between 

extreme rainfall and storm surge to estimate 

coastal flooding risk. Water Resources Research, 

50(3), pp.2050-2071. 

2014 Australia Extreme 

Rainfall 

Storm Surge Stochastic Copula; 

Multivariate 

Model 

Extreme Value 

Copula; 

Conditional 

Model 

Compound 
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Appendix C: Historic Multi-hazard events catalogue 

This appendix is a catalogue of 50 multi-hazard events related to the five multi-hazard networks 

(ground movement, convective storm, extratropical cyclone, compound dry, compound cold) 

presented in Chapter 3: 

• Table C1. The 50 historic major multi-hazard events compiled in Chapter 3. 

• Table C2. 32 sources used to build the historic major multi-hazard event catalogue. The 

sources are of five types: single hazard catalogue; catalogue of reported weather events; 

peer review articles, disaster database; multi-hazard catalogue. 

• Table C3. Supporting literature used to build the historic major multi-hazard events 

catalogue. 
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Table C1: The 50 historic major multi-hazard events compiled in Chapter 3. NHaz is the number of hazard 

reported within the event, NInter is the number of interrelation that might have occurred during the event 

according to the networks developed in Section 3.3. D is the duration of the events in days and Ref ID is the ID 

of the reference used to estimate the attributes of the multi-hazard event (references are displayed in Table C2 

and Table C3). 

MH 

Event 
Event Start Date End date Hazards Impacted place NHaz NInter 

Spatial 

scale 

D 

(days) 

Source 

ID 

G
ro

u
n

d
 M

o
ti

o
n

 

GM01 

Lisbon Tsunami 

1755 

01/11/1755 01/11/1755 Earthquake, 

Tsunami 

Portugal 2 3 Continental 0.1 1,2,5* 

GM02 

Norway 

Landslide-

Tsunami 1888 

23/04/1888 23/04/1888 Landslide, 

Tsunami 

Norway 2 1 Local 1 1* 

GM03 

Folkestone 

Tsunami 1911 

31/12/1911 31/12/1911 Landslide, 

Tsunami 

England 2 3 Local 1 1,5 

GM04 

Dogger Bank 

Earthquake 1931 

07/06/1931 07/06/1931 Earthquake, 

Tsunami 

England 2 3 Local 1 3,7 

GM05 

Valais earthquake 

1946 

25/01/1946 26/01/1946 Earthquake, 

Landslide 

Switzerland 2 6 Local 2 2* 

GM06 

Vaiont Landslide 

1963 

09/10/1963 09/10/1963 Landslide, 

Tsunami 

Italy 2 3 Local 1 13* 

GM-7 

Arette 

Earthquake 1967 

13/08/1967 13/08/1967 Earthquake, 

Landslide 

France 2 6 Regional 1 3,13* 

GM08 

Nice Tsunami 

1979 

16/10/1979 16/10/1979 Landslide, 

Tsunami 

France 2 3 Regional 1 1,13* 

GM09 

L'Aquila 

earthquake 2009 

06/04/2009 09/04/2009 Earthquake, 

Landslide 

Italy 2 6 Regional 4 13,18* 

GM10 

Lorca earthquake 

2011 

05/11/2011 08/11/2011 Earthquake, 

Landslide 

Spain 2 1 Regional 4 12,17* 

C
o

n
ve

ct
iv

e 
St

o
rm

 

CS01 

Lynmouth Flood 

1952 

15/08/1952 16/08/1952 Rain, Flood, 

Landslide 

England 3 3 Local 2 14,15,

17* 

CS02 

Lisbon Flood 1967 

25/11/1967 26/11/1967 Rain, River 

Flood, Landslide 

Portugal 3 3 Local 2 21* 

CS03 

Cantabrian range 

Flood 1983 

26/08/1983 27/08/1983 Rain, Landslides, 

flood 

Spain 3 3 Regional 2 12,21 

CS04 

Biescas Flood 

1996 

07/08/1996 07/08/1996 Rain, Flood, 

Landslide 

Spain 3 3 Local 1 21* 

CS05 

The Bracknell 

Storm 2000 

07/05/2000 07/05/2000 Rain, Lightning, 

Hail 

England 3 3 Local 0.1 29* 

CS06 

Paris Convective 

storm 2001 

06/07/2001 07/07/2001 Rain, Lightning, 

Landslides, Flood 

France 3 4 Local 1 12,28 

 

CS07 

Devon Convective 

storm 2008 

29/10/2008 30/10/2008 Rain, Lightning, 

Hail, Flood 

England 4 4 Local 2 29,31* 

CS08 28/06/2012 29/06/2012 Rain, Lightning, 

Hail, Landslide 

England 3 3 Regional 1 10,29* 
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MH 

Event 
Event Start Date End date Hazards Impacted place NHaz NInter 

Spatial 

scale 

D 

(days) 

Source 

ID 

Midlands 

Convective storm 

2012 

 

CS09 

SW France Flood 

2013 

18/06/2013 20/06/2013 Rain, Flood, 

Landslide 

France 3 3 Local 3 12,28 

CS10 

SE England Flood 

2016 

15/09/2016 16/09/2016 Rain, Lightning, 

Landslides, Flood 

England 4 4 Regional 1 30,31 

Ex
tr

a
tr

o
p

ic
a

l C
yc

lo
n

e 

ETC01 

Great Storm of 

1987 

15/10/1987 16/10/1987 Rain, Wind, River 

Flood 

United 

Kingdom, 

France 

2 1 Regional 2 14,17,

26* 

ETC02 

Storm Angus 

2016 

19/11/2016 20/11/2016 Rain, Wind, 

Storm Surge, 

Waves 

England, Wales 4 4 Regional 2 6,29,3

0 

ETC03 

Storm Martin 

1999 

27/12/1999 27/12/1999 Wind, Storm 

surge ,Waves, 

Rainfall, 

Landslide, Soil 

moisture excess, 

River Flood 

France, 

Switzerland, 

Italy 

3 2 Multi-

regional 

1 14,26* 

ETC04 

Storm Erwin 2005 

07/01/2005 08/01/2005 Rain, Wind, River 

Flood 

Denmark, 

Ireland, 

Norway, 

Sweden and 

United Kingdom 

3 3 Multi-

regional 

2 17,26,

29 

ETC05 

Storm Gero 2005 

11/01/2005 12/01/2005 Wind, Storm 

surge, Waves 

Ireland, United 

Kingdom 

3 2 Regional 2 6,17,2

6 

ETC06  

Storm Klaus 2009 

24/01/2009 24/01/2009 Wind, Storm 

surge, Waves, 

Rain, River 

Flood, 

Landslides, Soil 

moisture excess 

Spain, France, 

Italy 

7 7 Regional 1 26,28* 

ETC07 

Storm Xynthia 

2010 

28/02/2010 02/03/2010 Wind, Storm 

surge ,Waves 

France, Spain, 

Portugal, 

United Kingdom 

3 2 Multi-

regional 

3 14,26,

27 

ETC08  

St Jude Storm 

2013 

28/10/2013 28/10/2013 Rain, Wind, River 

Flood 

United 

Kingdom, 

France, 

Germany, 

Belgium, Ireland 

3 2 Regional 1 26,29,

30 

ETC09 

Storm Xaver 2013 

05/12/2013 06/12/2013 Wind, Storm 

Surge, Waves, 

Landslides 

United 

Kingdom, 

Belgium, 

Norway 

4 4 Regional 2 6,26,2

9 

ETC10 

Storm Desmond 

2015 

05/12/2015 06/12/2015 Rain, Wind, River 

Flood, 

Landslides, Soil 

moisture excess 

England, Wales 5 6 Regional 2 29,30,

32 

 

CD01 

Landes Wildfire 

1949 

19/08/1949 25/08/1949 Drought, 

Extreme hot 

temperature, 

Wildfire, Wind 

France 4 6 Local 7 14* 

CD02 

Europe Drought-

Heatwave 1976 

01/04/1976 30/08/1976 Drought, 

Extreme hot 

temperature 

France, United 

Kingdom 

2 3 Multi-

regional 

152 9,17,2

0,22,2

3 
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MH 

Event 
Event Start Date End date Hazards Impacted place NHaz NInter 

Spatial 

scale 

D 

(days) 

Source 

ID 

 

CD03 

Europe Drought 

1989-1991 

01/03/1989 01/12/1990 Drought, 

Extreme hot 

temperature, 

Wildfire 

France, Spain, 

Italy 

3 5 Multi-

Regional 

641 20,22,

23 

CD04 

Europe Heatwave 

2003 

01/06/2003 31/08/2003 Drought, 

Extreme hot 

temperature, 

Wildfire 

France, United 

Kingdom, Spain, 

Portugal, 

Germany, 

Belgium 

3 5 Continental 92 14,16,

17,22,

23,24,

28,29 

C
o

m
p

o
u

n
d

 D
ry

 h
a

za
rd

s 

CD05 

Iberian Heatwave 

2005 

01/07/2005 01/10/2005 Extreme hot 

temperature, 

Drought, 

Wildfire 

Spain, Portugal 3 5 Multi-

regional 

93 23,24,

25* 

CD06 

Europe Heatwave 

2006 

18/06/2006 28/08/2006 Extreme hot 

temperature, 

Drought 

United 

Kingdom, 

France, 

Belgium, 

Germany, 

Netherland 

2 3 Continental 72 17,23,

29* 

CD07 

UK Drought 2011 

01/01/2011 31/05/2011 Extreme hot 

temperature, 

Drought 

France, England 2 3 Multi-

regional 

151 9,20,2

9 

CD08 

UK Heatwave 

2015 

01/08/2015 02/08/2015 Extreme hot 

temperature, 

Wildfire 

United Kingdom 2 3 Multi-

regional 

2 9,14,2

9 

CD09 

Portugal Fire 

2017 

17/06/2017 18/06/2017 Drought, 

Extreme hot 

temperature, 

Wildfire, Wind 

Portugal 4 5 Local 2 14,24,

25* 

CD10 

UK-France 

Heatwave 2019 

01/03/2019 01/09/2019 Drought, 

Extreme hot 

temperature, 

Wildfire 

France, United 

Kingdom 

3 5 Multi-

Regional 

185 9,14,2

5,29 

C
o

m
p

o
u

n
d

 C
o

ld
 h

a
za

rd
s 

  

CC01 

UK-France Cold 

wave 1947 

21/01/1947 03/03/1947 Extreme cold 

temperature,  

Snow, River 

Flooding 

United 

Kingdom, 

France 

3 3 Multi-

regional 

42 17,19* 

CC02 

Europe Cold wave 

1956 

31/01/1956 29/02/1956 Extreme cold 

temperature, 

Extreme Snow 

France, 

Switzerland, 

Germany, Spain 

2 1 Continental 30 9,16,1

9* 

CC03 

Europe Cold wave 

1963 

13/11/1962 06/03/1963 Extreme cold 

temperature, 

Extreme Snow, 

Extreme wind 

France, United 

Kingdom, 

Belgium, 

Germany 

3 2 Multi-

regional 

114 9,16,1

9 

CC04 

France-Spain Cold 

wave 1971 

23/12/1970 15/01/1971 Extreme cold, 

Extreme snow 

France, Spain 2 1 Multi-

regional 

24 9,16,1

9 

CC05 

France 

Snowstorm 1980 

02/11/1980 13/11/1980 Extreme snow, 

Extreme cold 

France 2 1 Regional 12 9,19 

CC06 

France-Spain Cold 

wave 1985 

04/01/1985 19/01/1985 Extreme cold 

temperature, 

Extreme snow 

France, Spain 2 1 Multi-

regional 

16 9,14,1

6,19 

CC07 

France 

Snowstorm 2005 

14/02/2005 10/03/2005 Extreme cold, 

Extreme snow 

France 2 1 Regional 25 9,19 

CC08 02/02/2009 06/02/2009 Extreme cold, 

Extreme snow 

United Kingdom 2 1 Multi-

regional 

5 29* 
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MH 

Event 
Event Start Date End date Hazards Impacted place NHaz NInter 

Spatial 

scale 

D 

(days) 

Source 

ID 

UK Snowstorm 

2009 

 
CC09 

UK-France 

Snowstorm 2010 

25/11/2010 26/12/2010 Extreme cold, 

Extreme snow, 

Extreme wind 

United 

Kingdom, 

France 

3 2 Multi-

regional 

32 9,14,2

9 

 
CC10 

UK-France Cold 

wave 2018 

26/02/2018 01/03/2018 Extreme cold, 

Extreme snow, 

Extreme wind 

United 

Kingdom, 

France 

3 2 Multi-

regional 

4 29* 
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Table C2: 32 sources used to build the historic major multi-hazard event catalogue. Sources are of five types: single hazard catalogue; catalogue of reported weather events; peer review articles, 

disaster database; multi-hazard catalogue. Data in these catalogues have different types: Online tabular database; Online event catalogue, tabular database;  

ID Abbrev Full name Source type Data type Hazards Area of interest MH event Period Available info link - reference 

1 
 

NCEI Significant 

Earthquake Database 

Single hazard 

catalogue 

Online tabular 

database 

Earthquakes, Tsunami Global GM -2000-

2021 

Date, Location, 

Magnitude 

https://www.ngdc.noaa.gov/hazard/ea

rthqk.shtml 

2 
 

NCEI Tsunami database Single hazard 

catalogue 

Tabular 

database 

Tsunami Global GM -2000-

2020 

Date, Location, 

Magnitude 

https://www.ngdc.noaa.gov/hazard/ts

u_db.shtml 

3 ECOS-09 Swiss Seismological 

Service Earthquake 

catalogue 

Single hazard 

catalogue 

Online event 

catalogue 

Earthquakes Switzerland GM 250-

2008 

Date, Location, 

Magnitude 

http://seismo.ethz.ch/en/home/ 

4 EMEC EMEC Earthquake 

catalogue 

Single hazard 

catalogue 

Tabular with 

coordinates 

Earthquakes Europe GM 1000-

2006 

Date, Location, 

Magnitude 

http://emec.gfz-

potsdam.de/pub/emec_data/emec_da

ta_frame.html 

5 
 

SurgeWatch Single hazard 

catalogue 

Online event 

catalogue 

Extreme wave, Storm surge UK ETC 1000-

2018 

Date, Location, 

Magnitude 

https://www.surgewatch.org/ 

6 
 

A catalogue of tsunamis 

reported in the UK 

Single hazard 

catalogue 

Event catalogue Tsunami UK GM 1000-

2018 

Date, Location, 

Magnitude 

http://nora.nerc.ac.uk/id/eprint/51329

8/ 

7 
 

BGS Significant British 

Earthquakes 

Single hazard 

catalogue 

Online tabular 

database 

Earthquakes UK GM 1382- Date, Location, 

Magnitude 

https://earthquakes.bgs.ac.uk/earthqu

akes/UKsignificant/index.html 

8 BD 

Tsunamis 

Inventaire historique 

des tsunamis en France 

Single hazard 

catalogue 

Event catalogue Tsunami France GM 1564-

2009 

Date, Location, 

Magnitude 

http://infoterre.brgm.fr/rapports/RP-

61152-FR.pdf 

9 
 

Infoclimat.fr Catalogue of 

reported 

weather events 

Event catalogue Extreme wind, Extreme 

rainfall, Lightning, Extreme hot 

temperature, Extreme cold 

temperature, Extreme snow, 

Drought 

France ETC - CD - 

CC - CS 

1653- Date, Location, 

Magnitude 

Infoclimat.fr 

10 
 

Severe Hailstorms in the 

United Kingdom and 

Ireland: A Climatological 

Survey with Recent and 

Historical Case Studies 

Peer review 

article 

Journal article Hail UK CS 1687-

2012 

Date, Location, 

Magnitude 

Webb, J.D. and Elsom, D.M., 2016. 

Severe hailstorms in the United 

Kingdom and Ireland: a climatological 

survey with recent and historical case 

studies. Extreme Weather, pp.155-194. 

11 
 

Meteo France Tempetes Catalogue of 

reported 

weather events 

Online event 

catalogue 

Extreme wind France ETC 1703-

2018 

Date, Location, 

Magnitude 

http://tempetes.meteo.fr 



Appendix C: Historic Multi-hazard events catalogue 

Page 288 

ID Abbrev Full name Source type Data type Hazards Area of interest MH event Period Available info link - reference 

12 
 

Meteo France Pluie 

Extreme 

Catalogue of 

reported 

weather events 

Online event 

catalogue 

Extreme rainfall, Riverine 

Flood 

France ETC -CS 1766-

2018 

Date, Location, 

Magnitude 

http://pluiesextremes.meteo.fr 

13 EQIL Worldwide Database of 

Earthquake-Induced 

Landslide Inventories 

multi-hazard 

catalogue 

Tabular with 

coordinates 

Earthquakes, Landslides Global GM 1812-

2016 

Date, Location, 

Magnitude 

Tanyaş, H., van Westen, C. J., Allstadt, 

K. E., .et al.,(2017). Presentation and 

analysis of a worldwide database of 

earthquake‐induced landslide 

inventories. J. of Geophys. Res.: Earth 

Surface, 122, 2015.  

14 EM-DAT Emergency Events 

Database 

Disaster 

database 

Tabular with 

coordinates 

Extreme wind, Extreme 

rainfall, Lightning, Extreme hot 

temperature, Extreme cold 

temperature, Extreme snow, 

Drought, Flood, Earthquakes, 

Landslides, Tsunami 

Global GM - ETC 

- CD - CC 

- CS 

1900- Date, Location, 

Magnitude 

https://public.emdat.be/ 

15 
 

Extreme Rainfall and 

Flood Event Recognition 

(DEFRA) 

Catalogue of 

reported 

hydrological 

events 

Report River flooding, Extreme rainfall UK ETC - CS 1900-

2000 

Date, Location, 

Magnitude 

DEFRA and Environment Agency: 

Extreme Rainfall and Flood Event 

Recognition R&D Technical Report: 

FD2201., 2002. 

16 
 

Heat and cold waves in 

Spain 

Peer review 

article 

Journal article Extreme hot temperature, 

Extreme cold temperature 

Spain CD - CD 1900-

2013 

Date, Location, 

Magnitude 

Prats, J. M. C. and Notivoli, R. S.: Chapter 

21 Heat and Cold Waves in Spain, , 

(January), 307–322, 2013 

17 
 

Great British Weather 

disasters 

Book Event catalogue Extreme wind, Extreme 

rainfall, Lightning, Extreme hot 

temperature, Extreme cold 

temperature, Extreme snow, 

Drought, Flood,  Landslide 

UK ETC - CD - 

CC - CS 

1901-

2008 

 
Eden, P.: Great British Weather 

Disasters, Continuum., 2008. 

18 
 

An Open Repository of 

Earthquake-Triggered 

Ground-Failure 

Inventories 

multi-hazard 

catalogue 

Tabular with 

coordinates 

Earthquakes, Landslides Global GM 1908-

2016 

Date, Location, 

Magnitude 

https://www.sciencebase.gov/catalog/i

tem/583f4114e4b04fc80e3c4a1a 
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ID Abbrev Full name Source type Data type Hazards Area of interest MH event Period Available info link - reference 

19 
 

Meteo France Grand 

Froids 

Catalogue of 

reported 

weather events 

Online event 

catalogue 

Extreme cold temperature France CC 1947-

2018 

Date, Location, 

Magnitude 

http://www.meteofrance.fr/prevoir-le-

temps/meteo-et-sante/grands-froids# 

20 
 

The biggest drought 

events in Europe from 

1950 to 2012 

Peer review 

article 

Journal article Drought Europe CD 1950-

2005 

Date, Location, 

Magnitude 

 

21 
 

Major Floods in Europe 

1950-2005 

Peer review 

article 

Event catalogue Extreme rainfall, Riverine 

Flood 

Europe ETC - CS 1950-

2005 

Date, Location, 

Magnitude 

Barredo, J. I.: Major flood disasters in 

Europe: 1950-2005, Nat. Hazards, 42(1), 

125–148, 2007. 

22 GDFC A Global Drought and 

Flood Catalogue from 

1950 to 2016 

Single hazard 

catalogue 

Journal article; 

Tabular with 

coordinates 

Drought, River Flooding Global ETC - CS - 

CD 

1950-

2016 

Date, Location, 

Magnitude 

http://hydrology.princeton.edu/data/h

exg/GDFC/index.html 

23 EDR European Drought 

Reference 

Single hazard 

catalogue 

Online tabular 

database 

Drought Europe CD 1959-

2007 

Date, Location, 

Magnitude 

https://www.geo.uio.no/edc/droughtd

b/#:~:text=The%20European%20Droug

ht%20Reference%20(EDR,historical%20

drought%20events%20in%20Europe. 

24 PRFD Portuguese Rural Fire 

Database 

Single hazard 

catalogue 

Journal article; 

Tabular with 

coordinates 

Wildfire Portugal CD 1980-

2005 

Date, Location, 

Magnitude 

 

25 EFD European Fire Database Single hazard 

catalogue 

Tabular 

database 

Wildfire Europe CD 1980-

2016 

Date, Location, 

Magnitude 

https://effis.jrc.ec.europa.eu/applicatio

ns/data-and-services/ 

26 XWS Extreme Wind Storm 

Catalogue 

Single hazard 

catalogue 

Online event 

catalogue 

Extreme wind Europe ETC 1981-

2013 

Date, Location, 

Magnitude 

http://www.europeanwindstorms.org/

cgi-bin/storms/storms.cgi 

27 DFO Dartmooth flood 

database 

Single hazard 

catalogue 

Tabular with 

coordinates 

River flooding Global ETC - CS 1985- Date, Location, 

Magnitude 

https://www.dartmouth.edu/~floods/

Dataaccess.htm 

28 CAT NAT catastrophes naturelles 

CCR 

Disaster 

database 

Online event 

catalogue 

Riverine Flood, Drought, Storm 

surge, Landslides, Extreme 

wind, Earthquakes 

France ETC - CS - 

CD 

1989- Date, Location https://catastrophes-naturelles.ccr.fr/ 

29 
 

Met Office past 

Weather events 

Catalogue of 

reported 

weather events 

Online event 

catalogue 

Extreme wind, Extreme 

rainfall, Lightning, Extreme hot 

temperature, Extreme cold 

temperature, Extreme snow, 

Drought 

UK ETC - CD - 

CC - CS 

1990- Date, Location, 

Magnitude 

https://www.metoffice.gov.uk/weathe

r/learn-about/past-uk-weather-events 



Appendix C: Historic Multi-hazard events catalogue 

Page 290 

ID Abbrev Full name Source type Data type Hazards Area of interest MH event Period Available info link - reference 

30 
 

Historic Flood Warnings 

(Environmental Agency) 

Single hazard 

catalogue 

Tabular with 

coordinates 

Riverine Flood UK ETC - CS 2006- Date, Location, 

Magnitude 

https://data.gov.uk/dataset/d4fb2591-

f4dd-4e7f-9aaf-49af94437b36/historic-

flood-warnings 

31 
 

Floodlist Single hazard 

catalogue 

Online event 

catalogue 

Extreme rainfall, Riverine 

Flood 

Global ETC - CS 2007- Date, Location, 

Magnitude 

http://floodlist.com/ 

32 GLC Global Landslide Catalog Single hazard 

catalogue 

Tabular with 

coordinates 

Landslides Global ETC - CS 2007-

2016 

Date, Location https://data.nasa.gov/Earth-

Science/Global-Landslide-

Catalog/h9d8-neg4 
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Table C3 Supporting literature used to build the historic major multi-hazard events catalogue (Table C1) 

Full Name Hazards 
Area of 

interest 

MH 

Events 
Reference 

Analysis of large fires in 

European Mediterranean 

landscapes: Lessons learned 

and perspectives 

Wildfire Mediterranean 

basin 

CD04-

CD05 

San-Miguel-Ayanz, J., Moreno, J. M. and 

Camia, A.: Analysis of large fires in 

European Mediterranean landscapes: 

Lessons learned and perspectives, For. 

Ecol. Manage., 294, 11–22, 2013. 

Atmospheric analysis of the 

cold late February and early 

March 2018 over the UK 

Extreme cold 

temperature 

UK CC10 Greening, K. and Hodgson, A.: 

Atmospheric analysis of the cold late 

February and early March 2018 over the 

UK, Weather, 74(3), 79–85, 2019. 

The great storm of 16 October 

1987 

Extreme cold 

temperature 

UK ETC01 Prichard, B.: The Great Storm of 16 

October 1987, Weather, 67(10), 255–

260, 2012. 

The 1755 Lisbon earthquake Earthquake, 

Tsunami 

Portugal GM01 Chester, D. K.: The 1755 Lisbon 

earthquake, Prog. Phys. Geogr., 25(3), 

363–383, 2001. 

Forest Fires In Portugal 

Case Study, June 18, 2017 

Wildfire Portugal CD09 Radovanovic, M., Vyklyuk, Y., 

Stevancevic, M., Milenkovic, M., 

Jakovljevic, D., Petrovic, M., Malinovic-

Milicevic, S., Vukovic, N., Vujko, A., 

Yamashkin, A., Sydor, P., Vukovic, D. and 

Skoda, M.: Forest fires in Portugal - case 

study, 18 june 2017, Therm. Sci., 23(1), 

73–86, 2019. 

La catastrophe de Biescas du 7 

août 1996 ; analyse de la crue 

torrentielle du rio Aras dans les 

Pyrénées aragonaises (Espagne) 

River flooding, 

Extreme rainfall, 

Landslides 

Spain CS06 Lajournade, P. C., Beaufrcre, C., Lalanne-

Berdouticq, G. and Martignac, F.: La 

catastrophe de Biescas du 7 août 1996 ; 

analyse de la crue torrentielle du rio Aras 

dans les Pyrénées aragonaises (Espagne), 

Houille Blanche, 53(5–6), 128–137, 199 

Landslides Induced by Historical 

and Recent Earthquakes in 

Central-Southern Apennines 

(Italy): A Tool for Intensity 

Assessment and Seismic Hazard 

Landslides Italy GM09 Esposito, E., Guerrieri, L., Porfido, S., 

Vittori, E., Blumetti, A. M., Comerci, V., 

Michetti, A. M. and Serva, L.: Landslides 

Induced by Historical and Recent 

Earthquakes in Central-Southern 

Apennines (Italy): A Tool for Intensity 

Assessment and Seismic Hazard, in 

Landslide Science and Practice, pp. 295–

303, Springer Berlin Heidelberg, Berlin, 

Heidelberg., 2013. 

L'Incendie meurtrier dans la 

forêt des Landes en août 1949 

Wildfire France CD01 Deville, J.: L’incendie meurtrier dans la 

forêt des Landes en août 1949, edited by 

Pompiers De France., 2009. 
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Full Name Hazards 
Area of 

interest 

MH 

Events 
Reference 

Modelling of the 1888 Landslide 

Tsunami, Trondheim, Norway 

landslides, Tsunami Norway GM02 Glimsdal, S., L’Heureux, J.-S., Harbitz, C. 

B. and Pedersen, G. K.: Modelling of the 

1888 Landslide Tsunami, Trondheim, 

Norway, in Landslide Science and 

Practice, pp. 73–79, Springer Berlin 

Heidelberg, Berlin, Heidelberg., 2013 

The 1946 magnitude 6.1 

earthquake in the Valais: Site-

effects as contributor to the 

damage 

earthquake, 

Landslide 

Switzerland GM05 Fritsche, S. and Fäh, D.: The 1946 

magnitude 6.1 earthquake in the Valais: 

Site-effects as contributor to the 

damage, Swiss J. Geosci., 102(3), 423–

439, 2009 

The 1963 Vaiont Landslide  Landslide Italy GM06 Genevois, R. and Ghirotti, M.: The 1963 

Vaiont Landslide The 1963 Vaiont 

Landslide, G. di Geol. Appl., 1, 41–52, 

2005 

The 1979 Nice harbour 

catastrophe revisited: Trigger 

mechanism inferred from 

geotechnical measurements 

and numerical modelling 

Tsunami France GM08 Dan, G., Sultan, N. and Savoye, B.: The 

1979 Nice harbour catastrophe revisited: 

Trigger mechanism inferred from 

geotechnical measurements and 

numerical modelling, Mar. Geol., 245(1–

4), 40–64, 2007. 

The Lynmouth Flood of August 

1952 

River flooding, 

Extreme rainfall 

UK CS01 Dobbie, C. H.: The Lynmouth Flood of 

August 1952, 1953. 

Exceptional hailstorm hits 

Ottery St Mary on 30 october 

2008 

Hail UK CS07 Grahame, N., Riddaway, B., Eadie, A., 

Hall, B. and McCallum, E.: Exceptional 

hailstorm hits Ottery St Mary on 30 

october 2008, Weather, 64(10), 255–263, 

2009. 

The 1956 Cold Wave in Western 

Europe 

Extreme cold 

temperature 

Europe CC02 Dizerens, C., Lenggenhager, S., 

Schwander, M., Buck, A. and Foffa, S.: 

The 1956 Cold Wave in Western Europe, 

Geogr. Bernensia, G92, 101–111, 2017. 

Western European Snow of 1-2 

February 2009 

Extreme snow Europe CC08 Grumm, R. H.: Western European Snow 

of 1-2 February 2009., 2009 

The impacts of the 28 June 2012 

storms on UK road and rail 

transport 

Lightning  UK CS08 Jaroszweski, D., Hooper, E., Baker, C., 

Chapman, L. and Quinn, A.: The impacts 

of the 28 June 2012 storms on UK road 

and rail transport, Meteorol. Appl., 22(3), 

470–476, 2015 

An analysis of the July 2006 

heatwave extent in Europe 

compared to the record year of 

2003 

Extreme hot 

temperature 

Europe CD06 Rebetez, M., Dupont, O. and Giroud, M.: 

An analysis of the July 2006 heatwave 

extent in Europe compared to the record 

year of 2003, Theor. Appl. Climatol., 

95(1–2), 1–7, 2009 

Le tremblement de terre 

d'Arette 

Earthquake France GM07 Piolle, X.: Le tremblement de terre 

d’Arette, Rev. Geogr. Pyren. Sud. Ouest., 

39(4), 369–396, 1968. 
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Full Name Hazards 
Area of 

interest 

MH 

Events 
Reference 

Widespread landslides induced 

by the Mw 5.1 earthquake of 11 

May 2011 in Lorca, SE Spain 

Earthquake, 

Landslide 

Spain GM10 Alfaro, P., Delgado, J., García-Tortosa, F. 

J., Lenti, L., López, J. A., López-Casado, C. 

and Martino, S.: Widespread landslides 

induced by the Mw 5.1 earthquake of 11 

May 2011 in Lorca, SE Spain, Eng. Geol., 

137–138(May 2011), 40–52, 2012 

The deadliest storm of the 20th 

century striking Portugal: Flood 

impacts and atmospheric 

circulation 

River flooding, 

Extreme rainfall, 

Landslides 

Portugal CS02 Trigo, R. M., Ramos, C., Pereira, S. S., 

Ramos, A. M., Zêzere, J. L. and Liberato, 

M. L. R.: The deadliest storm of the 20th 

century striking Portugal: Flood impacts 

and atmospheric circulation, J. Hydrol., 

541, 597–610, 2016. 

The Bracknell hailstorm of 7 

May 2000 

Hail UK CS05 Pedgley, D. E.: The Bracknell storm, 7 

May 2000, Weather, 58, 171–181, 2003 

Three extreme storms over 

Europe in December 1999 

Extreme wind Europe ETC03 Ulbrich, U., Fink, A. H., Klawa, M. and 

Pinto, J. G.: Three extreme storms over 

Europe in December 1999, Weather, 

56(3), 70–80, 2001. 

Klaus - An exceptional winter 

storm over northern Iberia and 

southern France 

Extreme wind, River 

flooding, Extreme 

rainfall, soil 

moisture excess 

Spain, France ETC06 Liberato, M. L. R., Pinto, J. G., Trigo, I. F. 

and Trigo, R. M.: Klaus - An exceptional 

winter storm over northern Iberia and 

southern France, Weather, 66(12), 330–

334, 2011. 

Winter 1947 in the British isles Extreme cold 

temperature, 

Extreme snow, 

Extreme wind, River 

flooding 

UK CC01 Booth, G.: Winter 1947 in the British 

isles, Weather, 62(3), 61–68, 2007 

The European 2016/17 drought Extreme hot 

temperature, 

Drought, Wildfire 

Europe CD09 García-Herrera, R., Garrido-Perez, J. M., 

Barriopedro, D., Ordóñez, C., Vicente-

Serrano, S. M., Nieto, R., Gimeno, L., Sorí, 

R. and Yiou, P.: The European 2016/17 

drought, J. Clim., 32(11), 3169–3187, 

2019 
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Appendix D: Numerical data for quantitative multi-

hazard approach 

This appendix contains Table D1 which summarizes 34 freely available datasets to study and 

model the five multi-hazard networks presented in Chapter 3. 
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Table D1: Freely available numerical datasets for hazard interrelation studies divided into three categories: model outputs, In-situ observations and remote sensing.  
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M1. ERA 5                        
Gridded 

0.25°  
1979-

current Global hourly 

ETC-CC-

CD ECMWF - EU 

M2. UERRA                             
Gridded 

0.11°  - 

0.05° 

1961-

current Europe 

6-hourly; 

daily 

ETC-CD-

CS ECMWF - EU 

M3. GTSR                               
Gridded 

variable 
1979-

2014 Global daily ETC 

Vrije Universiteit 

Amsterdam - NL 

M4. Paired time 

series of daily 

discharge and storm 

surge 

                              

Gridded 

0.25 - 

variable 

1980-

2014 

Global daily ETC 

Vrije Universiteit 

Amsterdam - NL 

  

M5. EFAS                             
Gridded 

5km 
1991-

current Europe daily ETC-CS Copernicus - EU 

M6.POLCOMS-WAM                               
Gridded 

12km 
1999-

2008 UK hourly ETC BODC - UK 

M7. CMEMS Ocean 

waves hindcasts 
                              

Gridded 
0,083deg 

2018-

current Global 3-hourly ETC CMEMS - EU 

 

I1. Significant 

Earthquakes 

database 

               
Point 

observation 
NA 

-2150-

current 
Global NA GM NCEI - USA 

I2. Earthquake 

catalogue 
               

Point 

observation 
NA 

1000-

2006 
Global NA GM GFZ - GER 
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I3. Tsunami 

database 
               

Point 

observation 
NA 

-2000-

current 
Global NA GM NCEI - USA 

I4. EQIL Inventory                
Point 

observation 
NA 

1812-

2016 
Global NA GM 

University of 

Twente - NL 

I5. GLC                
Point 

observation 
NA 

2007-

2016 
Global NA CS-ETC NASA - USA 

I6. E-Obs                 Gridded 0.1° 
1950-

current 
Europe daily 

ETC-CC-

CD 
ECAD - EU 

I7. Hadley Centre 

observations 

datasets ISD 

               
Point 

observation 
NA 

1931-

current 
Global 

sub-

daily 

ETC-CC-

CD-CS 
Met Office - UK 

I8. Integrated 

Surface Database 

(ISD) 

               
Point 

observation 
NA 

1901-

current 
Global hourly 

ETC-CC-

CD-CS 
NCEI - USA 

I9. GHNC - daily                
Point 

observation 
NA 

1861-

current 
Global daily 

ETC-CC-

CD 
NCEI - USA 

I10. MIDAS Open: 

UK Land Surface 

Stations Data 

               
Point 

observation 
NA 

1853-

current 
UK 

hourly; 

daily 

ETC-CC-

CD-CS 
Met Office - UK 

 I11. GRDC                
Point 

observation 
NA 

1806-

current 
Global daily ETC-CS WMO 
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I12. National river 

flow archive 
               

Point 

observation 
NA 

1841-

current 
UK daily ETC-CS CEH - UK 

In
-s

it
u

 O
b

se
rv

at
io

n
s 

I13. Base de 

donnée 

Hydrométrie 

               
Point 

observation 
NA 

1920-

current 
France 

hourly; 

daily 
ETC-CS SANDRE - FR 

I14. ISMN                
Point 

observation 
NA 

1952-

current 
Global hourly ETC-CD ESA - EU 

I15. GESLA                
Point 

observation 
NA 

1848-

2015 
Global hourly ETC BODC - UK 

I16. UK Tide 

Gauge Network 
               

Point 

observation 
NA 

1915-

current 
UK hourly ETC BODC - UK 

 

I17. JASL                
Point 

observation 
NA 

1846-

current 
Global 

hourly; 

daily 
ETC NCEI - USA 

I18. Wave data 

series 
               

Point 

observation 
NA 

1954-

current 
UK daily ETC BODC - UK 

 

I19. PRFD                
Point 

observation 
NA 

1980-

2005 
Portugal  CD AFN - Portugal 

I20. ESWD                
Point 

observation 
NA 

2006-

current 
Europe NA CS ESSL - EU 
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S1. ATDNet                
Point 

observation 
NA 

2008-

current 
Europe NA CS Met Office - UK 

S2. MSWEP                 Gridded 0.25° 
1979-

2015 
Global 3-hourly CS-ETC 

Princeton 

Climate 

Analytics - USA 

S3. NIMROD 

Database 
                Gridded 1km 

2004-

current 
UK 

5 

minutes 
CS Met Office - UK 

S4. PERSIANN CSS                 Gridded 0.04° 
2003-

current 
Global 

hourly; 

daily 
CS-ETC CHRS - USA 

S5. GPM IMERG                 Gridded 0.1° 
2000-

current 
Global 

half-

hourly 
CS-ETC NASA - USA 

S6. CCI                 Gridded 
25km  - 

0.25° 

1978-

current 
Global 

daily; 

monthly 
CD ESA - EU 

S7. EUSTACE                 Gridded 0.25° 
1995-

2016 
Global daily CD-CC EU - EU 
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Appendix E: Comparing model abilities through tail 

dependence measures 

Summary:  

This appendix provides complementary results to Chapter 4 by comparing the six bivariate 

models abilities through dependence measure estimation. To compare tail dependence measure 

estimates to reference values, the root-mean-square error (RMSE) is used. Results show that 

marginal distributions do not have a significant impact on the estimation of the tail dependence 

measures and that the JT-KDE model is the most flexible to estimate dependence measures 

without prior assumption.  

E1. Tail dependence measures estimations 

Tail dependence measures  and χ are estimated by each model. For copulas, these measures are 

related to the copula parameters. In our set of four copulas, two are asymptotically dependent 

(Gumbel and Galambos) with =1 and two are asymptotically independent (normal and FGM) 

with χ=0. 

For the nonparametric joint tail approach, the χ and  measures are estimated following the 

procedure used by Winter (2016). For the conditional model, both measures are estimated from 

the simulated points. Marginal distributions (X1, X2) are transformed into the uniform margins 

(U1, U2). The χ measure is estimated by calculating the probability 𝑃(𝑉 > 𝑢|𝑈 > 𝑢) (Eq. 4.4). 

The η measure is estimated in two steps. First 𝜒 ̅(𝑢) is estimated as (Coles et al., 1999): 

̅(𝑢) =
2log 𝑃(𝑈>𝑢)

𝑙og 𝑃(𝑈>𝑢,𝑉>𝑢)
− 1 =  

2 log(1−𝑢)

log (𝜒(𝑢)(1−𝑢))
−  1, (E1) 

for 0 ≤ u ≤ 1 with u a sufficiently high threshold. Second, the η measure is estimated from 𝜒 ̅ 

(Eq. E1). 

To compare the estimated dependence measure to the reference value, the root-mean-square error 

(RMSE), a measure of efficiency that accounts for both the bias and variance of the estimates is 

used, similarly to Zheng et al. (2014). Similarly to the metrics used in Section 4.3, the RMSE is 

calculated from 100 realizations of the 60 datasets. 

E2. Comparison of model abilities 

The estimation of dependence measure is an important step in bivariate analysis (Coles et al., 

1999; Heffernan, 2000; Zheng et al., 2013, 2014; Dutfoy et al., 2014). Models have also been 

compared on their ability to estimate the dependence measures  and . Results arising from this 

comparison provide a different perspective on the abilities of each model. Figure E1 shows the 

RMSE of the dependence measures estimations for each of the 60 synthetic datasets. 
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Figure E1: RMSE (root-mean-square error) of the estimated dependence measures to the reference for all 60 

different datasets. Fitting capacities of each model are represented. Values in cells and colours represent the 

median RMSE from low (dark green) to high (red). The thickness of cell borders represent the 95% uncertainty 

around the median value 

From Fig. E1, we observe the following: 

− Marginal distributions do not have a significant impact on the accuracy of the estimation 

of these measures for the copulas.  

− Marginal distributions have a small impact on the estimation of the dependence measures 

for the conditional extremes model and the joint-tail model, however, this impact is not 

as important as for the level curve estimation  

− All copulas estimate very accurately the dependence measure within their operating range 

(AI for normal copula, near independence for FGM copula and AD for Gumbel and 
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Galambos copula). However, only the conditional extremes model and the joint-tail 

model can estimate both  and . 

− The dependence measure estimator used in the joint-tail KDE approach offers slightly 

more accurate estimation for, in particular for . 

− Estimation performance of both joint tail KDE and condition extreme models decreases 

when approaching the interface between asymptotic dependence and asymptotic 

independence. The RMSE at =0.05 is close the 100% of the value of  while the RMSE 

 =0.9 is at its highest for both Cond-EX and JT-KDE models. It is then hard to decipher 

with confidence the nature of the dependence in the asymptotic domain for low  values 

and high  values.  
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Appendix F: Supplement to Evaluating the efficacy of 

bivariate extreme modelling approaches for multi-

hazard scenarios (Chapter 4). Aloïs Tilloy et al.  

Summary: 

This appendix consists of a theoretical background on univariate and multivariate extreme value 

theory and on bivariate joint density. In Appendix F1, major theoretical concepts of multivariate 

extreme value theory are presented and the connections between these concepts is discussed. In 

Appendix F2, the joint density function of a bivariate distribution and its use for level curve 

comparison are presented 

F1. Theoretical background on multivariate extreme values. Associated Section 4.2.1: 

Bivariate extreme dependence and Section 4.2.2: Bivariate models 

F1.1 Univariate extreme value theory and regular variation 

Extreme value analysis is a statistical approach for analysing extreme data values for a variable 

of interest. One of the earliest recorded mentions is by Fisher and Tippet (1928). Extreme value 

analysis was formalized into a statistical method by Gumbel (1958). It has been used extensively 

in the environmental sciences to overcome the limitations of empirical approaches (based on 

observed data) (e.g., Tiago de Oliveira, 1986; Bingham, 2007). Here we present three main 

concepts linked to univariate extreme value theory that can be extended to the bivariate case. 

 

F1.1.1 Maximum domain of attraction and GEV 

The first principle from which arises extreme value distributions is the maximum domain of 

attraction: let the random variables x, …,xn be i.i.d. values, with distribution function F. Define 

Mn = max (x1,...,xn) and suppose there exist sequences of normalizing constants an>0, bn such that 

(as n → ∞) (Davison and Huser, 2015): 

 

P (
𝑀𝑛 − 𝑏𝑛

𝑎𝑛
≤ 𝑧) = 𝐹𝑛(𝑎𝑛𝑧 + 𝑏𝑛)

𝑑
→  𝐺(𝑧) 

(F1.1) 

 

where 
𝑑
→ denotes convergence in the distribution and G is a non-degenerate distribution function. 

Then G is an extreme value distribution and it is said that F belongs to the maximum domain of 

attraction of G. The constants an and bn are called stabilizing constants. The possible G 

distributions are then summarized by the Generalized Extreme Value (GEV) distribution 

(Gümbel, 1958; Coles, 2001; Davison and Huser, 2015): 
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𝐺(𝑥) = 𝑃(𝑋 ≤ 𝑥) = exp (−(1 + 𝜉
𝑥 − 𝜇

𝜎
)

−
1
𝜉) 

(F1.2) 

for 1 + 𝜉
𝒙−𝝁

𝝈
> 0, with 

− 𝜇 𝜖 (−∞, ∞) the location parameter 

− 𝜎 𝜖 [0, ∞) the scale parameter 

− 𝜉 𝜖 (−∞, ∞) the shape parameter 

 

The shape parameter 𝜉 controls the heaviness of the tail. It means that the value of this parameter 

directly affects the estimation of the extremes. The Extreme Type Theorem gives three different 

families of limiting distributions depending on the sign of the shape parameter (Coles, 2001):  

− ξ = 0, a Gumbel distribution with an exponential upper tail;  

− ξ > 0, a Fréchet distribution with a heavy upper tail; 

− ξ<0, a reverse Weibull distribution with a light upper tail.  

 

A threshold above which one value is considered as extreme can be set instead of selecting block 

maxima as extreme values. In that case, the distribution G of the exceedances above a high 

threshold u is a Generalized Pareto Distribution (GPD) (Davison and Smith, 1990) of the form: 

 

𝐺(𝑥) = 𝑃(𝑋 ≤ 𝑥|𝑋 > 𝑢) = 1 − (1 + 𝜉
𝑥 − 𝑢

𝜎𝑢

)
−

1
𝜉  

(F1.3) 

for x > u, with  

− 𝜎𝑢 𝜖 [0, ∞) the scale parameter 

− 𝜉 𝜖 (−∞, ∞) the shape parameter 

 

The shape parameter 𝜉 of the GPD is equivalent to the shape parameter of the corresponding GEV 

distribution. This shape parameter changes with the threshold level, which makes the choice of 

the threshold important(Bernardara et al., 2014). The scale parameter for the GPD is also 

threshold-dependent. 

 

F1.1.2 Max-stability 

In the early years of extreme value statistics, Fréchet (1927) identified a functional equation, 

which he called the stability postulate that provides a mathematical basis for extrapolation and 

thus lies at the heart of the classical theory of extremes (Davison and Huser, 2015). His stability 

postulate is now referred to as max-stability (see Eq. A4). Max-stability is a property that is only 

satisfied by the three families of GEV: the Gumbel, Fréchet and Reverse Weibull families (Coles, 

2001). A distribution G is then said to be max-stable if, for every n > 0, there exist constants an> 

0 and bn such that: 
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𝐺𝑛(𝑎𝑛𝑧 + 𝑏𝑛) = 𝐺(𝑧) (F1.4) 

 

where Gn(z) is the distribution function of Mn = max (x1, ... ,xn), with the xi independent variables 

for a distribution G. This means that max-stability is satisfied by distributions for which the fact 

of taking sample maxima leads to the same distribution apart from changes of parameters (Coles, 

2001). The maximum domain of attraction and the max-stability property allows one to model 

any sample maxima distribution with a GEV distribution. 

 

F1.1.3 Regular variation 

Another important concept linked to extreme value analysis is the theory of regularly varying 

functions. The link between this concept and extreme values has been mainly discussed by 

Resnick (1987). A regularly varying function is a function which behaves asymptotically like a 

power function. A function F is regularly varying at ∞ with index ρ, if for x > 0 (Resnick, 1987): 

 

lim
𝑡→∞

𝑈(𝑡𝑥)

𝑈(𝑡)
= 𝑥𝜌 

(F1.5) 

 

If ρ = 0, we call U a slowly varying function. Slowly varying functions are usually denoted by 

ℒ(𝑥)The theory of regularly varying functions has links to many mathematical disciplines 

(Bingham et al., 1987). Moreover, it has been used to understand and investigates maximum 

domains of attraction in extreme value theory (Bingham et al., 1987; Resnick, 1987; De Haan and 

Resnick, 1996; Bingham, 2007).  

 

F1.2 Multivariate extreme value statistics 

Multivariate extreme value theory is an extension of univariate extreme value theory (Tiago de 

Oliveira, 1986; Resnick, 1987; Coles, 2001) and various properties of extreme value distributions 

are analogous in the multivariate framework. Here, the statistics of extremes in a multivariate 

context are formally presented building on the concepts introduced above (Section F1.1) 

 

F1.2.1 Maximum domain of attraction and max stability  

The maximum domain of attraction can be extended in the multivariate framework. Let the 

random variables (Xj,1, …,Xj,d), where j=1,…,n, be a collection d-dimensional vectors of i.i.d. 

values with a joint distribution F. Define Mn = max (X1,k, . ... ,Xn,k) for k = 1,…,d and suppose 

there exist sequences of normalizing constants an,k > 0, bn,k  for k= 1,…,d such that as n → ∞ 

(Dutfoy et al., 2014): 
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P (
𝑀𝑛,1 − 𝑏𝑛,1

𝑎𝑛,1
≤ 𝑧1, … ,

𝑀𝑛,𝑑 − 𝑏𝑛,𝑑

𝑎𝑛,𝑑
 ≤ 𝑧𝑛) = 𝐹𝑛,𝑑(𝑎𝑛,𝑑𝑧𝑑 + 𝑏𝑛,𝑑)

𝑑
→  𝐺(𝑧1, … , 𝑧𝑑) 

(F1.6) 

 

where 
𝑑
→ denotes convergence in the distribution and G is a distribution function with all non-

degenerate marginals. Then the limiting distribution G is a Multivariate Extreme value 

distribution of dimension d, and F is said to be in the maximum domain of attraction of G. Each 

marginal  

 

𝑍𝑘 =  lim
𝑛→∞

(
𝑀𝑛,𝑘 − 𝑏𝑛,𝑘

𝑎𝑛,𝑘
)                 𝑘 = 1, … , 𝑑  

(F1.7) 

 

follows a GEV distribution (Section F1.1) with parameters (𝜇𝑘 , 𝜎𝑘, 𝜉𝑘). In can also be shown that 

G must satisfy the max stability relation (Resnick, 1987; Tawn, 1988, 1990; Coles, 2001).  

 

In practice, two steps are generally required to conduct a multivariate study:  

(i) marginal distributions are usually estimated using the univariate extreme value 

methodology (Section F1);  

(ii) the marginal distributions are then transformed to a common distribution, to handle the 

dependence structure using multivariate extreme value theory.  

For reason of mathematical elegance and simplicity, but without loss of generality, marginal 

distributions are usually transformed to standard Fréchet distributions in multivariate extreme 

value analysis where an,k=k-1 and bn,k = 0 in (A7). This allows one to focus on the dependence 

structure between variables (Winter, 2016). From now on, we consider random variables Z = 

(Z1,…,Zn) with common standard Fréchet margins. 

 

F1.2.2 The exponent measure 

The characterization of the dependence structure in the extremes is too complex to be summarized 

by a parametric family (Davison and Huser, 2015). However, the limiting distribution of Z with 

common Fréchet margins is a multivariate extreme value distribution G with z ϵ ℝD and can be 

written as (Huser, 2013): 

 

                              𝐺(𝑧) = exp {−𝑉(𝑧)}, z > 0, (F1.8) 

 

where V(z) is a Radon measure called the exponent measure, which contains all the information 

about dependence among the variables Z= (Z1, …, Zn). The exponent measure can be interpreted 

as the approximate probability that at least one of the maxima Zn,k  exceeds its threshold (Davison 

and Huser, 2015): 
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𝑉(𝑧) = 𝐷 ∫ max (
𝑤

𝑧
) 𝑑𝐻(𝑤)

 

𝑆𝐷

 
(F1.9) 

  

with H a measure on the (D−1)-dimensional simplex SD = w ∈ ℝ. The measure dH is often called 

the spectral measure.  

 

From the max-stability property with Fréchet margins, the exponent measure is regularly varying 

and homogeneous of order –1, meaning that: 

 

𝑉(𝑡𝑧) =  𝑡−1𝑉(𝑧) (F1.10) 

 

Properties of the exponent measure, including its regular variation, play a central role when it 

comes to extrapolation in the upper tail of multivariate variables (Davidson and Huser, 2015). If 

a bivariate distribution is asymptotically independent, then the exponent measure V(t) = 0. The 

theory of regular variation also provides a framework for extrapolation in the upper tail and has 

been related to multivariate extreme value theory (Resnick, 1987, Cooley. et al. 2019). 

 

F1.2.3 Multivariate and hidden regular variation 

Results presented in Eqs. F1.7, F1.8 and F1.10 can be related to the concept of multivariate regular 

variation developed and presented by Resnick (Resnick, 1987, 2002). Multivariate variation on 

the cone 𝐶 =  [0, ∞]𝑑 − {0} can be defined as the following: suppose that Z is a d-dimensional 

random vector in [0, ∞]𝑑, then the distribution of Z is regularly varying (with unequal 

components) if there exist functions b(t) →∞, as t →∞ that, for a Radon measure ν (i.e., finite on 

sets bounded away from zero) on C, we have the vague convergence which can be expressed 

as(Cooley et al., 2019): 

 

lim
𝑡→∞

[𝑡𝑃 (
𝑍

𝑏(𝑡)
∈ 𝐴)] → 𝑣 (𝐴) 

(F1.11) 

 

for any set A ⊂ C and where b(t) is a regularly varying function of some index 𝛼>0 and v is a 

Radon measure on the cone 𝐶 =  [0, ∞]𝑑 − {0} which satisfies the homogeneous property  

 

𝑣(𝑡𝐴) = 𝑡−𝛼 𝑣(𝐴) (F1.12) 

 

for any scaler t and A ⊂ C. The limit measure v(A) has a homogeneity property of order –𝛼. The 

coefficient 𝛼 is the index of regular variation and 𝛼 = 1
𝜉⁄  with 𝜉 the shape parameter of the 
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marginal distributions (see Section F1.1). With a standard Fréchet margins we have 𝜉 = 1 and 

therefore 𝛼 = 1.  

 

Multivariate extreme value and regular variation theory previously presented provide a rich theory 

for extremal dependence in the case of asymptotic dependence (Pickands, 1981; Das, 2009) but 

it is not able to distinguish between asymptotic independent and actual independence. Ledford 

and Tawn (1996; 1997) developed a dependence measure that can detect tail dependence in the 

asymptotic independence setting. The coefficient of tail dependence η measures the speed of 

decay toward independence at a high level (Davison and Huser, 2015). The coefficient η provides 

a better understanding of asymptotically independent behaviours and helped develop the concept 

of hidden regular variation.  

 

Hidden regular variation is a property of the subfamily of distributions having both multivariate 

regular variation and asymptotic independence. (Resnick, 2002; Maulik and Resnick, 2005) 

Resnick (2002) Asymptotic independence is a degenerative case for multivariate extreme value 

theory (Cooley, 2019). The renormalizing sequence b(t) in Eq. F1.11 grows too rapidly. The latter 

is replaced by a lighter tailed normalizing sequence b0. Hidden regular variation can therefore be 

expressed on the cone 𝐶 =  (0, ∞]𝑑 as: 

 

lim
𝑡→∞

[𝑡𝑃 (
𝑍

𝑏0(𝑡)
∈ 𝐴)] → 𝑣0 (𝐴) 

(F1.13) 

 

for any set A bounded away from the axes, A ⊂ C, where b0 is a regularly varying function and v 

is a Radon measure (i.e., finite on sets bounded away from zero) on the cone 𝐶 (0, ∞]𝑑 which 

satisfies  

 

𝑣0(𝑡𝐴) = 𝑡−1/𝜂 𝑣0(𝐴) (F1.14) 

 

for any scaler t and A ⊂ C. Here, η is the coefficient of tail dependence 𝜂 𝜖 (0,1]. A decreasing 

value of η corresponds to weaker dependence. 

 

F1.3 Bivariate case 

In the bivariate case, when d = 2, the exponent measure (Section A2.2) is expressed as: 

 

𝑉(𝑧1, 𝑧2) = ∫ max (
𝑤

𝑧1

,
1 − 𝑤

𝑧2

) 2𝑑𝐻(𝑤)
1

0

 
(F1.15) 

with H an arbitrary distribution function on [0,1] satisfying the moment constraint 
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∫ w𝑑𝐻(𝑤) = 1/2
1

0

 
(F1.16) 

An alternative representation of equation incorporates the Pickands dependence function 

(Pickands, 1975), denoted by A(w) 

 

𝑉(𝑧1, 𝑧2) = (𝑧1
−1 +  𝑧2

−1) 𝐴(
𝑧1

𝑧1 + 𝑧2

) (F1.17) 

where A(w) satisfies  

𝐴(𝑤) = 2 ∫ max((1 − 𝑤)𝑞, 𝑤(1 − 𝑞)) 𝑑𝐻(𝑞)
1

0

 
(F1.18) 

The Pickands dependence function A(w) is a defined on the interval [0,1] and has the following 

properties: (i) A(0) = A(1) = 1, (ii) A(w) is convex and (iii) A(w) is contained in a triangular region 

A(w) is usually used as a measure of the strength of dependence between two variables z1 and z2. 

The Pickands dependence function can be estimated parametrically through copula functions or 

with nonparametric estimators (Pickands, 1981; Capéraà et al., 1997). 

F1.3.1 Gumbel copula 

The Gumbel copula (which is also an Archimedean copula) is one of the oldest extreme value 

copulas (Eschenburg, 2013). It is also referred to as the bivariate logistic model (with Gumbel 

margins) in the literature and was first introduced by Gumbel (1961):  

𝐶(𝑢, 𝑣) = exp {−[(− ln(𝑢))𝜃 + (− ln(𝑣))𝜃]
1/𝜃

} 
(F1.19) 

with θ ∈ [1, ∞] the dependence parameter, u and v uniform marginal distributions, and ln the 

natural log and exp the exponential. 

 

The Gumbel copula has been used widely in hydrology (Zhang and Singh, 2007; Salvadori and 

De Michele, 2010; Zheng et al., 2013; Dung et al., 2015) and coastal engineering (Yang and 

Zhang, 2013; Masina et al., 2015; Mazas and Hamm, 2017). We will also use this copula in our 

simulation study as a reference for the asymptotic dependence case. Other important extreme 

value copulas include the Galambos copula which will be used alongside the Gumbel copula as 

asymptotically dependent models in our simulations (Sect. 4.3). 

 

F1.3.2 Normal copula 

The normal copula has been used in several hazard interrelation studies because of its flexibility 

(Rueda et al., 2016; Serinaldi, 2016; Sadegh et al., 2017). The normal copula is a single parameter 

copula with its parameter directly linked to the tail dependence coefficient η presented in Sect. 

2.2. As showed by Ledford and Tawn (1997), the normal copula is suitable for the whole range 

of behaviour within the class of asymptotic independence (i.e. from sub-asymptotic positive to 
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negative association). We use the normal copula as a reference for the asymptotic independence 

case; the normal copula is expressed as (Sadegh et al., 2017): 

𝐶(𝑢, 𝑣) = ∫ ∫
1

2𝜋√1 − 𝜌2
𝑒𝑥𝑝 (

2𝜌𝑥𝑦 − 𝑥2 − 𝑦2

2(1 − 𝜌2)
) 𝑑𝑥𝑑𝑦

𝛷−1(𝑣)

−∞

𝛷−1(𝑢)

−∞

 
(F1.20) 

with Φ(.) the standard Gaussian distribution function and  ∈ [-1, 1] the dependence parameter. 

The FGM copula exhibits near independent joint tail dependence behaviour, meaning that the 

coefficient of tail dependence is η = 0.5 (Ledford and Tawn, 1997).  
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F2. Level curve density. Associated Section: Section 2.3: Return Period in the bivariate 

framework and Section 3.2: Diagnostic tools 

As mentioned in the main text, Section 2.3 level curves are composed of an infinite set of bivariate 

values all corresponding to the same probability of exceedance. In the context of multi-hazards, 

events with very different properties (e.g., a storm with heavy rain and moderate wind vs. another 

storm with moderate rain and heavy wind) can have the same return period (Chebana and Ouarda, 

2011; Volpi and Fiori, 2012; Sadegh et al., 2018). One approach that has been implemented when 

using copula models is to use the density of the associated copula to weight (X1,X2) pairs on the 

curves (Volpi and Fiori, 2012). The joint density function of a copula is defined as (Volpi and 

Fiori, 2012): 

  

𝑓𝑋1,𝑋2
(𝑥1, 𝑥2) =  

𝜕2𝐹𝑋1,𝑋2
(𝑥1, 𝑥2)

𝜕𝑥1𝜕𝑥2
. 

(F2.1) 

 

It is then possible to identify a most-likely scenario (Gr̈aler et al., 2013; Sadegh et al., 2018) 

which is the coordinate of the level curve with the highest joint density (Fig. F2.1). Chebana and 

Ouarda (2011) proposed the decomposition of level curves into a naïve part (tail) and a proper 

part (central). Volpi and Fiori (2012) defined a level of probability to determine lower and upper 

limits of the proper part of the level curve. The most likely scenario and proper part of the level 

curve are shown in Fig. F2.1, respectively by the purple dot and the curve domain between blue 

diamonds along the level curve. The joint density probability function of copulas has also been 

used to estimate joint confidence intervals for level curves (Dung et al., 2015; Zhang et al., 2015; 

Serinaldi, 2016). 
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Figure F2.1: Level curve density from low (green) to high (red) for a probability of joint (X1, X2) exceedance 

p = 0.001 with its density (5000 realisations on a normal copula with log-normal distributions). The purple dot 

represents the most likely scenario while the two blue diamonds represent the upper and lower bound of the 

proper part of the curve with a 95% confidence level. 

The level curve density can be estimated from parametric models (i.e., copula). However, it is 

also possible to estimate density with a kernel density estimator when enough data are available 

(main text, Section4. 2.3.3). For extreme low probability level curves as the ones we are interested 

in this study, there are few or no data. The simulation of extreme bivariate data with the 

conditional extremes model (main text, Section 4.2.3.2) overcomes this limitation, it is then 

possible to estimate the level curve density via a kernel density estimator. 
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Appendix G: Sensitivity Analysis of the spatiotemporal 

clustering procedure developed in Chapter 5. 

Summary:  

This Appendix G consists of a Sensitivity Analysis on the spatiotemporal clustering procedure 

for Compound Hazard Cluster Identification (CHCI) developed in Chapter 5. Parameters 

influencing the CHCI method are listed and a brief overview of sensibility analysis is provided. 

The Sensitivity Analysis is performed over one year of reanalysis data (2016) with the SRC 

(standardized regression coefficient). The SRC is a sensitivity index to assess the importance of 

each input parameter. For compound hazard cluster, the most dominant variable is the threshold 

for the sampling of extreme events.  

G1. Introduction  

In Chapter 5, a methodology is designed to identify single and compound hazard events over 

Great Britain. The Procedure developed involves numerous steps to go from raw ERA5 data of 

hourly maximum wind gust and hourly accumulated precipitation to compound wind rain clusters. 

Three main parameters influence the process and consequent results: 

(i) the threshold selected to sample extreme events u  

(ii) the ratio r of the spatiotemporal scaling parameter a and b 

(iii) the density threshold μ  

 

The neighbour parameter ε is not included here in the set of parameters that might influence the 

clustering process as it is set in a systematic manner (Section 5.3.2). The value of the parameter 

ultimately depends on the three other parameters. The limitations around the selection of these 

parameters are discussed in Section 5.4. In this appendix, a Sensitivity Analysis is conducted to 

understand the effect of the three aforementioned parameters (u, r, μ) on the output of the 

spatiotemporal clustering procedure (Figure 5.4). The Sensitivity Analysis is performed on a 

subsample of the datasets used in Chapter 5. One year of data (January-December 2016) is used 

to reduce computational time.  

G2. Sensitivity Analysis 

The idea behind Sensitivity Analysis is to change an input parameter X and assess if it produces 

a change in the output parameter Y. The measure of this change in Y allows determining the 

sensitivity of Y with respect to X (Nguyen and Reiter, 2015). A panoply of methods have been 

developed to conduct Sensitivity Analysis (See Hamby, 1994; Frey et al., 2003; Nguyen and 

Reiter, 2015 for reviews). Here, a “statistical (or probabilistic) approach” is used. This type of 

approach is based on the generation of a sample of input vectors and associated outputs (Frey et 

al., 2003). The three parameters of interest are sampled within given ranges. The extreme 
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threshold u is set to 0.99 (99th percentile) in Chapter 5. In this SA, u varies between 0.95 and 

0.99. The scaling parameters ratio takes three values: 2, 4, 8. Finally the density threshold μ takes 

four values between 5 and 30. The combination of these parameters creates a sample of 60 input 

parameter sets. The values retained for each parameter are displayed in Table G1. 

Table G1: Values taken by the three input parameters in Sensitivity Analysis  

Parameter Values 

Extreme threshold u 0.99; 0.98; 0.97; 0.96; 0.95 

Scaling parameters ratio r 2; 4; 8 

Density threshold μ 5; 10; 20; 30 

 

The output variables of interest of this sensitivity analysis are the number of wind, rain and 

compound hazard clusters created. The clustering procedure illustrated in Figure 5.4 is run for 

each of the 60 parameter sets, providing 60 output sets. To quantify the sensitivity of the three 

output in respect to u, r and μ, a sensitivity index is computed. Several sensitivity indices have 

been developed for statistical SA including: PEAR (Pearson product moment correlation 

coefficient), SPEA (Spearman coefficient), SRC (standardized regression coefficient), and SRRC 

(standardized rank regression coefficient) (Nguyen and Reiter, 2015). These indices are 

regression-based sensitivity indices that are suitable for linear trends. 

 

Regression methods are often used in SA because of their relative simplicity and their low 

computational cost (Hamby, 1994; Nguyen and Reiter, 2015). Regression techniques build an 

approximate empirical model starting from a sample of the input x= (x1, …, xk) and output variable 

y. Such models can be written as (Bolado-Lavin and Badea, 2008): 

𝑦(𝑥) =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘  𝑥𝑘 +  𝜀 (G1) 

Where ε ~ N(0, σ2) (normal distribution with null mean and variance σ2) is a white noise and β = 

(β1, … βk) are the regression coefficients. Equation G1 is a first-order polynomial regression and 

assumes the independence of each input. The regression parameters provide an estimate of the 

strength of the correlation between the inputs x and the output y. Regression techniques allow to 

create a sensitivity ranking based on the relative magnitude of each regression coefficient. To 

compare the magnitude of regression parameters, a standardization process is beneficial (Hamby, 

1994).  

 

One widely used sensitivity index based on the regression method is the SRC (standardized 

regression coefficient). This coefficient is expressed as follow (Saltelli et al., 2004):  
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𝑆𝑅𝐶𝑖 =  𝛽𝑖

𝜎𝑥𝑖

𝜎𝑦

 (G2) 

where 𝑖 ∈ (1: 𝑘), 𝛽𝑖 is the regression parameter of the variable xi, 𝜎𝑥𝑖 is the variance of variable 

xi and 𝜎𝑦 is the variance of the output variable y. The influence of each input variables on the 

output is therefore comparable. The absolute value of the SRC represents a measure for parameter 

importance with higher SRC values indicating more influence on the model outcome, the sign of 

the SRC value indicates whether the model outcome increases or decreases as the value of the 

input factor changes (Menberg et al., 2016). The reliability of the SRC depends on how well the 

linear regression model represents the output variable(Nguyen and Reiter, 2015). To assess how 

well the model fits the output, the coefficient of determination R2, which indicates how much of 

the output variance 𝜎𝑦 can be explained by the variance of the linear model 𝜎𝑥 (Menberg et al., 

2016). R2 is bounded between 0 and 1. Lower values indicate a poor fit of the model.  

G3. Results 

The Sensitivity Analysis is performed with the R package sensitivity (Iooss et al., 2020) on three 

outputs: number of wind clusters Nw, number of rain cluster Nr and number of compound clusters 

Nc. The aim is to identify which input parameters are the most likely to influence the number of 

detected clusters, and therefore influence the results of the analysis developed in Chapter 5. 

Polynomial linear regression is computed regarding each of the three outputs. The regression 

coefficient of each variable has a p-value which tests the null hypothesis that the variable does 

not correlate with the output. For a p-value below a given significant level (e.g., 0.01), there is 

evidence to reject the null hypothesis that there is zero correlation between the input variable and 

the output. The results of the regression analysis for Nw, Nr and Nc are displayed in Table G2, 

Table G3 and Table G4. 

TableG2: Results for the regression analysis on the number of wind clusters Nw 

Parameters Regression 

coefficients 

P-value SRC Rank 

u -7215.8 3.84e-13*** -0.71 [-0.84,-0.54] 1 

r 9.3 0.03* 0.16 [0.30,0.52] 3 

μ 5.9 2.31e-06*** 0.39 [-0.84,-0.60] 2 

R2 = 0,92 | Significance Levels: 99.9% ‘***’ 99% ‘**’ 95% ‘*’ 

Table G2 have displayed the results of the regression analysis of the model 𝑁𝑤 = 𝑓(𝑢, 𝑟, 𝜇). The 

coefficient of determination value is R2 = 0.92, meaning that 92% of the variation in Nw is 

explained by the model. The p-values highlights if the relationship between u, r, μ and Nr is 

statistically significant. The scaling parameters ration r has a significant positive influence at a 
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95% level on the number of wind cluster according to the regression analysis. However, this 

influence remains weak compared to the one of u and μ. The extreme threshold u has a strong 

negative influence on the number of clusters, while the density threshold μ has a positive effect 

on Nw. (Table G2). 

Table G3 Results for the regression analysis on the number of rain clusters Nr 

Parameters Regression 

coefficients 

P-value SRC Rank 

u -13800.8 <2e-16*** -0.59 [-0.69,-0.48] 2 

r 2.7 0.58 0.02 [-0.06,0.10] 3 

μ -25.7 <2e-16*** -0.75 [-0.84,-0.60] 1 

R2 = 0,66 | Significance Levels: 99.99% ‘***’ 99.9% ‘**’ 99% ‘*’ 

In Table G3 are displayed the results of the regression analysis of the model 𝑁𝑟 = 𝑓(𝑢, 𝑟, 𝜇). The 

coefficient of determination value is R2 = 0.66, meaning that 66% of the variation in Nr is 

explained by the model. Despite being low, this value does not entirely disqualify the model. The 

p-values highlights if the relationship between u, r, μ and Nr are statistically significant. The 

scaling parameters ration r has an insignificant influence on the number of rain clusters according 

to the regression analysis. However, the extreme threshold and the density threshold both have a 

strong negative influence on the number of clusters, with the density threshold being the most 

important variable (Table G2). 

 

Table G4 Results for the regression analysis on the number of compound clusters Nc 

Parameters Regression 

coefficients 

P-value SRC Rank 

u -1.15e+04 <2e-16*** -0.92 [-0.99,-0.83] 1 

r -5.54 0,03* -0.08 [-0.16,-0.01] 3 

μ -5.15 1.06e-10*** -0.28 [-0.35,-0.20] 2 

R2 = 0,93 | Significance Levels: 99.99% ‘***’ 99.9% ‘**’ 99% ‘*’ 

In Table G4 are displayed the results of the regression analysis of the model 𝑁𝑐 = 𝑓(𝑢, 𝑟, 𝜇). The 

coefficient of determination value is R2 = 0.93, meaning that 93% of the variation in Nc is 

explained by the model. The p-values highlights if the relationship between u, r, μ and Nc are 

statistically significant. The scaling parameters ration r has a significant positive influence at a 

95% level on the number of compound clusters according to the regression analysis. However, 

the extreme threshold and the density threshold both have a negative influence on the number of 

clusters, with the extreme threshold being by far the most important variable (Table G2). 
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Figure G2 displays the absolute value of the SRC of the three input variables on the outcomes 

Nw, Nr and Nc. It indicates which variables are the most influent on the outcomes. The threshold 

parameter u has the most important influence on the Nw and Nc. The scaling parameter ratio r has 

low influence (insignificant for Nr) while the density threshold μ has the most important effect on 

Nr. It appears that Nr is not influenced by the same input parameters as Nw and Nc which are 

highly dominated by the value of the extreme threshold u. It is important to note that the linear 

regression models fitted on Nw and Nc both have a high R2, while the one fitted on Nr has a low 

R2, highlighting the difference between precipitation extremes and wind gust extremes. 

 

Figure G0.1: Results of the sensitivity analysis on the three output variables (Nr, Nw, Nc). U is the extreme 

threshold, r is the scaling parameter ration and μ is the density threshold. The absolute value of the standardized 

regression coefficient of each input variables is displayed for each output variable. 

G4. Conclusion 

In this appendix, variables that can influence the result of the spatiotemporal clustering procedure 

developed in Chapter 5 have been identified and highlighted in Figure 5.4. The output variables 

retained to assess the influence of the procedure to the input variables are the number of rain, 

wind and compound hazard clusters created. These output variables are believed to have a 

significant influence on spatiotemporal attributes of clusters. A Sensitivity Analysis has been 

conducted on a sample of 60 combinations of the three input variables u, r and μ (Table G1). The 

Sensitivity Analysis was done over one year of reanalysis data (2016) with a regression-based 

approach. The SRC was used as a sensitivity index to assess the importance of each input 

parameter. For compound hazard cluster, the most dominant variable is the threshold for the 

sampling of extreme events which has a strong negative correlation with the number of clusters 
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created, meaning that an increase of the threshold reduces the number of clusters. In Chapter 5, 

the highest value of u tested in the Sensitivity Analysis was selected (0.99). With the parameter 

set used in Chapter 5, 109 compound hazard clusters were identified for one year. The large size 

of the sample created justifies the use of a high threshold which is the main parameter influencing 

the number of clusters created. 
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Appendix H: Complementary analysis of 

spatiotemporal features of compound wind-rain 

clusters 

Summary:  

This Appendix H consists of complementary analysis on spatiotemporal features of compound 

wind rain events in Great Britain and highlights how the database of compound hazard events 

created in Chapter 5 can be further exploited. Herethe proportion of compound hazard events 

among wind and rain events is analysed with respect to the size and duration of these events. The 

two season spatial patterns regarding the occurrence of compound wind-rain events are discussed 

and spatial dependence of compound wind-rain occurrence between different sites are 

highlighted.  Bivariate modelling is used to estimate return periods (estimated average time 

between event) of compound hazards events and highlight the influence of the intensity of 

extreme rainfall and extreme wind on the spatial and temporal scales of compound hazards events. 
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H1. Spatiotemporal features 

Figure H1 shows the proportion of compound events amongst wind and rain events conditioned 

on the footprint (a) and duration (b) of events. For both rain and wind events, events with a greater 

footprint are more likely to be involved in a compound event. For example, when considering all 

footprint sizes, compound hazards events represent 20% of all rain events (Figure H1). For events 

with a footprint greater than 33% of the study area (i.e., regional and multi-regional), the share of 

compound event surges to 52%.  

 

 

Figure H1: Proportion of Compound wind rain events among wind events (orange) and rain events (blue) 

depending on (a) spatial footprint (b) duration of the hazard events. 

 

The seasonal patterns of compound wind-rain events have been discussed in Section 5.3. More 

than 80% of compound wind and precipitation events occur in the extended winter. In Figure H2, 

the frequency of compound events is displayed similarly to Figure 5.13a. However, in Figure 

H2, two maps are displayed, one for the extended winter and one for the extended summer. This 

division highlight two different patterns in terms of frequency of occurrence of compound wind-

rain events. During the extended winter, there is a strong west-east pattern. This pattern is similar 

to the one observed by Blenkinsop et al. (2017) for daily rainfall accumulations, which are 

influenced by the prevailing direction of cyclonic weather systems and modified by orography, 

with western and northern areas being associated with orographically enhanced rainfall. In 

summer this pattern of compound wind rain events is replaced by a less well-defined north-south 

pattern. During summer, extreme hourly rainfall is less likely to be associated with such cyclonic 
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systems and more probably a consequence of local-scale convection (or convection embedded 

within such systems) (Blenkinsop et al., 2017). 

 

 

Figure H2: Total hours in a compound wind-rain event during (a) extended winter and (b) extended summer. 

Black lines are drawn manually to highlight the spatial patterns in compound wind-rain event occurrence. 

The spatial dependence between different sites is investigated in Figure H3. Figure H3 highlight 

the probability of each grid cell in the study area to be in a compound wind-rain event knowing 

that a given cell of reference is in a compound event (Ps). Four locations in Great Britain are taken 

as cells of reference: Cumbria, Sheffield, London and Glasgow. The spatial extent of compound 

wind-rain events is displayed with a different perspective from the one adopted in Chapter 5, 

highlighting that London is more likely to be in a large-scale event than Glasgow. Spatial 

dependences between places are also visible, for example, compound events occurrence in 

London is associated to compound events occurrence in South England while compound event 

occurring in Sheffield are more likely to develop over the Midlands and Wales.  
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Figure H3: Spatial dependence of compound wind-rain occurrence between different sites. Ps is The probability 

of each grid cell in the study area to be in a compound wind-rain event knowing that a given cell of reference is 

in a compound event. 

 

H2. Bivariate modelling 

The concept of return period in a multivariate context has been widely discussed in the recent 

literature (Serinaldi, 2015; Gouldby et al., 2017) (See Chapter 4). Nevertheless, a bivariate return 

period is expressed as a curve, named level curve (Volpi and Fiori, 2012; Bevacqua et al., 2017). 

Here, the joint exceedance level curve is used to estimate a bivariate return period as it is 

commonly used in the literature and is relevant for practitioners (Hawkes, 2008; Mazas and 

Hamm, 2017). Let the random variables (X, Y) be vectors of i.i.d. values, the joint return period T 

of X and Y associated to the event (X> x and Y>y) can be expressed as following (Mazas and 

Hamm, 2017): 
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𝑇(𝑥, 𝑦) =  
1

𝜆𝑝𝑃(𝑋 > 𝑥, 𝑌 > 𝑦)
 (H1) 

With 𝜆𝑝 the mean number of events per year. 

 

To estimate the extreme bivariate return period (e.g., 10 years,100 years), one can use bivariate 

extreme models. As there is no assumption here about the dependence between extreme wind and 

extreme rain within compound wind-rain events, a non-parametric approach is used, the joint tail 

KDE (kernel density estimation) approach, initially developed by (Cooley et al., 2019). This 

approach combines a bivariate KDE to estimate bivariate the joint density below a threshold and 

multivariate extreme value theory to extrapolate in the joint tail of the bivariate distribution (see 

Chapter 4). However, in the joint tail, two variables can be either asymptotically independent or 

asymptotically dependent. The tail dependence is estimated with two measures χ and η (see 

Chapter 4). A value of η = 1 indicates asymptotic dependence, in which case the value of χ gives 

a measure of the strength of dependence. A limiting value of η less than 1 indicates asymptotic 

independence in which case χ is irrelevant and the value of η gives a measure of the strength of 

dependence (Coles et al., 1999). 

 

The intensity of rain and wind within a compound event is important to quantify the interrelation 

between these two hazards, and in particular, the nature of the dependence in the extremes. 

Bivariate extreme models can estimate the extremal dependence between two variables and 

therefore estimate joint return periods of events (Chapter 4). In this section, a bivariate extreme 

model is used to (i) evaluate the dependence structure between extreme rainfall and extreme wind 

gust in compound hazards events; (ii) extract set compound events with a return level greater than 

1 year; (iii) examine the properties of major compound events. 

 

To model the extremal dependence and the joint probability of wind and rain within a compound 

hazards event, the joint tail KDE model was used (see Chapter 4). The selection of this model 

has been driven by several factors: (i) its flexibility and relevance for the dependence structure of 

the compound hazards dataset; (ii) its relative simplicity and computational efficiency; (iii) its 

ability to estimate the return period of every event. The two tail dependence measures are 

estimated empirically and with the estimator presented in Winter (2016) which is derived from 

the joint-tail model of Ledford and Tawn (1997). The estimates with 95% CI bounds are displayed 

in Table H1. For more information about the two tail dependence measures, the reader can refer 

to Section 4.2. 



Appendix H: Complementary analysis of spatiotemporal features of compound wind-rain clusters 

Page 326 

Table H1: The two tail dependence estimates for the 4555 wind and rain accumulation couples. The empiric and 

model estimates of χ and η are displayed with a 95% confidence interval in brackets. 

Tail dependence measure Empiric estimate JT.KDE estimate 

χ 0.13 [-0.08,0.33] 0.1 [0.07,0.13] 

η 0.58 [0.45,0.62] 0.54 [0.51,0.57] 

 

Estimates from Table H1 are used to characterize the nature of the tail dependence between wa 

and ra in compound hazards events. As η <<1, these two variables are considered as 

asymptotically independent and the value of η gives a measure of the strength of dependence 

(Coles et al., 1999). Moreover, the value of η suggests a weak positive dependence. Figure H4 is 

a scatterplot of ra and wa of the 4555 compound hazard events. A bivariate kernel density 

estimator is used to estimate the extreme level curve corresponding to a 1-year return period. This 

level curve is represented by a blue line in Figure H4 and is used as a threshold to select the most 

intense compound hazards events over the 1979–2019 period. A total of 222 events exceeds the 

empiric 1-year return period threshold (coloured points in Figure H4) among the 4555 in the 

initial sample. The return period of the events is then estimated with the JT-KDE model. The most 

extreme events detected by our method over the period 1979–2019 occurred on January 7th and 

8th 2005. It was the result of an extratropical cyclone named Erwin by the Free University of 

Berlin and mainly impacted Northern England and Scotland before causing important damages 

in Sweden and Baltic countries (Suursaar et al., 2006). To give an order of magnitude, its wind-

rain bivariate return period is estimated at more than 350 years by the JT-KDE model.  
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Figure H4: Scatter plot of wind accumulation (x-axis) and rain accumulation (y-axis) pairs of the 4555 compound 

hazards events identified with the CHCI methodology. The light blue line corresponds to a 1-year joint return 

period estimated with a kernel density estimator. This line is the threshold used to select major compound 

hazards events which are shown in colour. Colours of points above the blue line correspond to the return period. 

While this sample of major events represents only 5% of the total number of events, it accounts 

for more than 35% of the total number of compound wind-rain event hours over Great Britain. 

This suggests that the most intense events in term of wa and ra last on average longer and have a 

larger footprint. This assumption is confirmed by Figure H5, which shows the spatial footprint 

and duration of the 4555 Compound wind-rain events detected and highlights the 222 major 

events sampled (Figure H5). While the relationship between joint return period, duration and 

footprint is not linear (most intense events are not the longest or the largest), Figure H5 shows 

that major events occur in a different spatiotemporal interval than all events. Major events can 

occur on a small spatial scale (footprint < 1%), but their footprint is on average 5 times larger 

than the one of all compound wind-rain events. Major events also last at least 12 hours with an 

average duration of 40 hours. This suggests that the combined intensity of wind and rain in 

compound hazards events influences their duration and footprint size. 
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Figure H5: Duration and spatial footprint of the 4555 compound hazard events identified in the study. Grey 

points correspond to the whole population and coloured point correspond to the 222 major compound hazard 

events (with a bivariate return period greater than 1 year). Lines highlight the space-time contour of the whole 

population (grey) and the sample of major events (red). 
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Appendix I: Historic major wind or precipitation 

extreme events in Great Britain (1979-2019) 

This appendix is a catalogue of 157 major wind or precipitation extreme events that occurred in 

Great Britain over the period 1979–2019. These events and their historic (Start date; end date) 

and spatial attributes (Region) are used to assess the ability of the method developed in Chapter 

5 to identify extreme events. 

• Table I1. The 157 historic major multi-hazard events compiled in Chapter 5. 
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Table I1: The 157 historic major multi-hazard events compiled in Chapter 5. Regions are the 11 NUTS1 regions 

in Great Britain. The dominant hazard represents the primary hazard reported in sources and is used to 

associate the event to wind or rain clusters. Associated hazards are also displayed if mentioned in the sources. 

 ID Year Name Start date End date Region Dominant 
hazard 

Associated 
hazards 

Source 

1 1979 
Fastnet 
storm 1979-08-13 1979-08-14 South-West 

Extreme 
wind   Eden,2008 

2 1979   1979-12-04 1979-12-05 Scotland 
Extreme 
wind   Eden,2008 

3 1979   1979-12-14 1979-12-15 South-West 
Extreme 
wind   Eden,2008 

4 1979   1979-12-27 1979-12-28 All regions 
Extreme 
rainfall River flooding Eden,2008 

5 1980   1980-07-26 1980-07-26 
South; 
Midlands; East 

Extreme 
rainfall River flooding Eden,2008 

6 1980   1980-08-07 1980-08-08 
East; East-
Midlands 

Extreme 
rainfall River flooding Eden,2008 

7 1981   1981-03-09 1981-03-10 

Sout-West; East 
Midlands; West 
Midlands; 
Wales 

Extreme 
rainfall River flooding Eden,2008 

8 1981   1981-03-21 1981-03-23 

Sout-West; East 
Midlands; West 
Midlands; 
Wales 

Extreme 
rainfall River flooding Eden,2008 

9 1981   1981-04-14 1981-04-14 South-East 
Extreme 
rainfall Lightning Eden,2008 

10 1981   1981-07-09 1981-07-09 

South-East; 
London; South-
West 

Extreme 
rainfall 

Lightning; 
River flooding Eden,2008 

11 1981   1981-08-05 1981-08-06 

North-West; 
Midlands; 
London 

Extreme 
rainfall 

Lightning; 
River flooding Eden,2008 

12 1981   1981-12-13 1981-12-13 South-West 
Extreme 
wind 

Storm surge; 
extreme snow Eden,2008 

13 1982   1982-01-02 1982-01-08 
Scotland; 
Yorkshire 

Extreme 
rainfall 

Soil moisture 
excess; River 
flooding Eden,2008 

14 1982   1982-03-03 1982-03-03 Scotland 
Extreme 
wind   Eden,2008 

15 1982   1982-06-21 1982-06-22 Yorkshire 
Extreme 
rainfall River flooding Eden,2008 

16 1982   1982-07-11 1982-07-12 South-West 
Extreme 
rainfall River flooding Eden,2008 

17 1982   1982-12-15 1982-12-20 All regions 
Extreme 
wind   Eden,2008 

18 1983   1983-01-31 1983-02-01 All regions 
Extreme 
wind Storm surge  Eden,2008 

19 1983   1983-03-04 1983-03-06 Scotland 
Extreme 
rainfall River flooding Eden,2008 

20 1983   1983-05-27 1983-05-28 Scotland 
Extreme 
rainfall River flooding Eden,2008 

21 1983   1983-06-05 1983-06-05 South-West 
Extreme 
rainfall 

Hail, River 
flooding Eden,2008 

22 1983   1983-07-17 1983-07-17 North-West 
Extreme 
rainfall River flooding Eden,2008 

23 1983   1983-09-02 1983-09-05 All regions 
Extreme 
wind   Eden,2008 

24 1983   1983-12-20 1983-12-20 
South-East; 
South-West 

Extreme 
wind Storm Surge Eden,2008 

25 1984   1984-07-23 1984-07-24 South-West 
Extreme 
rainfall River flooding Eden,2008 

26 1984   1984-10-18 1984-10-18 All regions 
Extreme 
wind   Eden,2008 

27 1984   1984-11-03 1984-11-03 
Scotland; 
North-East 

Extreme 
rainfall River flooding Eden,2008 
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28 1986   1986-03-24 1986-03-24 
Wales; West-
Midlands 

Extreme 
wind   Eden,2008 

29 1986   1986-08-25 1986-08-26 

South-West; 
Yorkshire; 
Midlands; 
Wales; North-
West 

Extreme 
rainfall 

River 
flooding; 
Extreme wind Eden,2008 

30 1986   1986-12-29 1986-12-29 Wales 
Extreme 
rainfall River flooding Eden,2008 

31 1987   1987-03-27 1987-03-27 
South-West; 
Wales 

Extreme 
wind   Eden,2008 

32 1987   1987-08-23 1987-08-23 

North-West; 
East-Midlands; 
East; South-East 

Extreme 
rainfall River flooding Eden,2008 

33 1987   1987-10-09 1987-10-10 South-East 
Extreme 
rainfall River flooding Eden,2008 

34 1987 

Great 
Storm 
of 1987 1987-10-15 1987-10-16 

South-East; 
South-West 

Extreme 
wind   

Eden,2008; 
EM-DAT 

35 1987   1987-10-18 1987-10-19 Wales 
Extreme 
rainfall River flooding Eden,2008 

36 1988   1988-02-09 1988-02-09 

North-West; 
South West; 
Yorkshire 

Extreme 
wind   Eden,2008 

37 1988   1988-10-19 1988-10-19 North-West 
Extreme 
rainfall River flooding Eden,2008 

38 1989   1989-02-05 1989-02-06 Scotland 
Extreme 
rainfall River flooding Eden,2008 

39 1989   1989-02-13 1989-02-13 

Scotland; 
North-East; 
North-West; 
Yorkshire 

Extreme 
wind   Eden,2008 

40 1989   1989-04-11 1989-04-11 Wales 
Extreme 
wind   Eden,2008 

41 1989   1989-05-19 1989-05-19 
North-West; 
Yorkshire 

Extreme 
rainfall River flooding Eden,2008 

42 1989   1989-10-28 1989-10-28 South-West 
Extreme 
wind   Eden,2008 

43 1989   1989-12-14 1989-12-20 South-West 
Extreme 
rainfall 

Extreme 
wind; Storm 
surge Eden,2008 

44 1990 

Burn's 
day 
storm 1990-01-25 1990-01-25 

Wales; South-
West; South-
East; Yorkshire; 
London; East; 
Midlands; 
North-East; 
North-West 

Extreme 
wind 

Extreme 
rainfall; River 
flooding 

Eden,2008; 
DFO 

45 1990   1990-02-26 1990-02-26 

North-West; 
Wales; 
Yorkshire 

Extreme 
wind 

Storm surge; 
Extreme 
rainfall; River 
flooding 

Eden,2008; 
DFO 

46 1990   1990-03-14 1990-03-15 Scotland 
Extreme 
rainfall River flooding Eden,2008 

47 1990   1990-10-28 1990-10-28 
South-East; 
South-West 

Extreme 
wind 

Extreme 
rainfall; River 
flooding; 
Storm surge 

Eden,2008; 
DFO 

48 1991 Undine 1991-01-05 1991-01-05 

Scotland; 
North-West; 
Wales 

Extreme 
wind 

Extreme 
rainfall 

Eden,2008; 
EM-DAT; 
DFO 

49 1991   1991-02-24 1991-03-01 North-East 
Extreme 
rainfall River flooding DFO 

50 1991   1991-09-27 1991-09-29 All regions 
Extreme 
wind 

Extreme 
rainfall 

Eden,2008; 
DFO 
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51 1991   1991-11-12 1991-11-12 
South-West; 
West-Midlands 

Extreme 
wind   Eden,2008 

52 1991   1991-12-20 1991-12-21 
North-West; 
Yorkshire 

Extreme 
rainfall River flooding Eden,2008 

53 1991   1991-12-31 1992-01-01 Scotland 
Extreme 
wind   Eden,2008 

54 1992   1992-03-31 1992-04-02 
Scotland; 
North-East 

Extreme 
rainfall River flooding 

Eden,2008; 
DFO 

55 1992   1992-05-29 1992-05-31 

London; East-
Midlands; 
West-Midlands 

Extreme 
rainfall River flooding Eden,2008 

56 1992   1992-08-29 1992-08-31 All regions 
Extreme 
wind 

Extreme 
rainfall Eden,2008 

57 1992   1992-09-18 1992-09-23 

South-West; 
West-Midlands; 
London 

Extreme 
rainfall River flooding 

Eden,2008; 
DFO 

58 1992   1992-11-29 1992-12-02 
Wales; South-
West 

Extreme 
rainfall River flooding 

Eden,2008; 
DFO 

59 1993   1993-01-16 1993-01-17 Scotland 
Extreme 
wind 

Storm surge; 
extreme snow 

Eden,2008; 
DFO 

60 1993   1993-01-23 1993-01-23 Scotland 
Extreme 
rainfall   EM-DAT 

61 1993   1993-02-21 1993-02-21 

Scotland; 
North-West; 
North-East 

Extreme 
wind Storm surge Eden,2008 

62 1993   1993-06-09 1993-06-11 

Wales; South-
West; South-
East 

Extreme 
rainfall River flooding 

Eden,2008; 
DFO 

63 1993   1993-12-09 1993-12-10 
Wales; 
Midlands 

Extreme 
wind   Eden,2008 

64 1993   1993-12-30 1993-12-31 South-West 
Extreme 
rainfall River flooding 

Eden,2008; 
DFO 

65 1994   1994-01-23 1994-01-23 Scotland 
Extreme 
wind   Eden,2008 

66 1994   1994-04-01 1994-04-01 
Wales; South-
West 

Extreme 
wind   Eden,2008 

67 1994   1994-08-31 1994-09-01 East 
Extreme 
rainfall River flooding Eden,2008 

68 1994   1994-12-07 1994-12-12 Scotland 
Extreme 
rainfall River flooding EM-DAT 

69 1994   1994-12-26 1994-12-28 Wales 
Extreme 
rainfall River flooding Eden,2008 

70 1995   1995-01-17 1995-01-21 All regions 
Extreme 
wind   Eden,2008 

71 1995   1995-01-30 1995-01-31 
North-West; 
Yorkshire 

Extreme 
rainfall 

River 
flooding; 
Landslides Eden,2008 

72 1995   1995-03-17 1995-03-17 
Wales; 
Midlands; East 

Extreme 
wind   Eden,2008 

73 1996   1996-02-19 1996-02-20 
East; Yorkshire; 
South-East 

Extreme 
wind 

Extreme 
snow; Storm 
surge Eden,2008 

74 1996   1996-05-19 1996-05-19 South-West 
Extreme 
rainfall Extreme wind Eden,2008 

75 1996 Lili 1996-10-27 1996-10-27 

South-West; 
South-East; 
London; 
Scotland 

Extreme 
wind   

Eden,2008; 
EM-DAT 

76 1997   1997-02-24 1997-02-24 England; Wales 
Extreme 
wind Storm surge Eden,2008 

77 1997   1997-05-17 1997-05-17 Midlands 
Extreme 
rainfall 

Hail; Extreme 
wind Eden,2008 

78 1997   1997-06-30 1997-07-01 Scotland 
Extreme 
rainfall River flooding 

Eden,2008; 
EM-DAT 

79 1997   1997-08-03 1997-08-04 South-West 
Extreme 
rainfall River flooding Eden,2008 
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80 1997   1997-08-13 1997-08-13 Scotland 
Extreme 
wind   EM-DAT 

81 1997   1997-08-19 1997-08-19 

London; East-
Midlands; 
West-Midlands 

Extreme 
rainfall 

River 
flooding; 
Landslides Eden,2008 

82 1997   1997-12-24 1997-12-24 All regions 
Extreme 
wind   Eden,2008 

83 1998 
 
Désirée 1998-01-04 1998-01-04 

South-West; 
Wales 

Extreme 
wind Storm surge 

Eden,2008; 
EM-DAT 

84 1998   1998-03-07 1998-03-08 Wales 
Extreme 
rainfall River flooding DFO 

85 1998   1998-04-08 1998-04-09 
Wales, 
Midlands 

Extreme 
rainfall River flooding 

Eden,2008; 
EM-DAT; 
DFO 

86 1998   1998-06-13 1998-06-14 Scotland 
Extreme 
rainfall River flooding DFO 

87 1998   1998-10-24 1998-10-24 

Wales, South-
West; West-
Midlands 

Extreme 
rainfall River flooding 

Eden,2008; 
EM-DAT; 
DFO 

88 1998   1998-12-26 1998-12-29 All regions 
Extreme 
wind   Eden,2008 

89 1999   1999-01-04 1999-01-05 North-West 
Extreme 
rainfall River flooding Eden,2008 

90 1999   1999-03-05 1999-03-06 Yorkshire 
Extreme 
rainfall River flooding 

Eden,2008; 
EM-DAT; 
DFO 

91 1999   1999-12-03 1999-12-03 Wales 
Extreme 
wind   Eden,2008 

92 1999   1999-12-24 1999-12-25 
South-West; 
Wales 

Extreme 
wind Storm surge 

Eden,2008; 
DFO 

93 2000   2000-01-03 2000-01-03 Scotland 
Extreme 
wind   Eden,2008 

94 2000   2000-04-27 2000-04-27 Scotland 
Extreme 
rainfall   EM-DAT 

95 2000 
Braknel
l storm 2000-05-07 2000-05-07 South-East 

Extreme 
rainfall River flooding Met Office 

96 2000   2000-07-04 2000-07-04 South-East 
Extreme 
rainfall River flooding Eden,2008 

97 2000   2000-10-11 2000-10-12 South-East 
Extreme 
rainfall River flooding 

Eden,2008; 
EM-DAT; 
DFO 

98 2000   2000-10-28 2000-10-29 Yorkshire 
Extreme 
rainfall River flooding EM-DAT 

99 2000   2000-10-30 2000-10-30 

South-East; 
South-West; 
Wales 

Extreme 
wind Storm Surge 

Eden,2008; 
DFO 

100 2000   2000-11-30 2000-11-30 
South-West; 
South-East 

Extreme 
wind   EM-DAT 

101 2000   2000-12-13 2000-12-14 England; Wales 
Extreme 
wind   Eden,2008 

102 2001   2001-02-09 2001-02-09 South-East; East 
Extreme 
rainfall   EM-DAT 

103 2001   2001-07-04 2001-07-04 Wales 
Extreme 
rainfall River flooding Eden,2008 

104 2001   2001-10-20 2001-10-21 Midlands; East 
Extreme 
rainfall River flooding 

Eden,2008; 
EM-DAT; 
Met Office; 
DFO 

105 2002 
Jennife
r 2002-01-28 2002-01-29 Scotland 

Extreme 
wind   

Eden,2008; 
EM-DAT 
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106 2002   2002-02-01 2002-02-02 

Wales; South-
East; South-
West 

Extreme 
wind 

Extreme 
rainfall; Storm 
surge; River 
flooding Eden,2008 

107 2002   2002-02-22 2002-02-22 Yorkshire 
Extreme 
wind   Eden,2008 

108 2002   2002-07-20 2002-07-20 

North-West; 
Yorkshire; 
Scotland 

Extreme 
rainfall   EM-DAT 

109 2002   2002-07-30 2002-08-01 Yorkshire 
Extreme 
rainfall River flooding 

Eden,2008; 
DFO 

110 2002   2002-09-09 2002-09-09 South-West 
Extreme 
rainfall River flooding Eden,2008 

111 2002   2002-10-22 2002-10-25 Scotland 
Extreme 
rainfall River flooding DFO 

112 2002 Jeanett 2002-10-27 2002-10-27 

South-West; 
South-East; 
London; Wales 

Extreme 
wind   

Eden,2008; 
EM-DAT 

113 2002   2002-11-13 2002-11-14 
Scotland; 
South-West 

Extreme 
rainfall   

Eden,2008; 
EM-DAT; 
DFO 

114 2002   2002-12-27 2002-12-31 

South-West; 
South-East; 
London; Wales 

Extreme 
rainfall River flooding 

Eden,2008; 
DFO 

115 2004   2004-02-01 2004-02-05 
Wales; North-
West 

Extreme 
rainfall River flooding 

Eden,2008; 
DFO 

116 2004   2004-03-20 2004-03-20 England; Wales 
Extreme 
wind   Eden,2008 

117 2004   2004-07-07 2004-07-08 
East-Midlands; 
East 

Extreme 
rainfall 

River 
flooding; 
Lightnings Eden,2008 

118 2004 

Boscast
le 
disaste
r 2004-08-16 2004-08-16 South-West 

Extreme 
rainfall 

River 
flooding; 
Landslides 

Eden,2008; 
EM-DAT; 
DFO 

119 2005 Erwin 2005-01-06 2005-01-07 

Scotland; 
North-West; 
North-East; 
Wales; 
Yorkshire 

Extreme 
wind 

Extreme 
rainfall; River 
flooding 

Eden,2008; 
EM-DAT; 
DFO 

120 2005 Gero 2005-01-11 2005-01-12 All regions 
Extreme 
wind 

Extreme 
rainfall; River 
flooding 

Eden,2008; 
EM-DAT 

121 2005   2005-06-19 2005-06-19 

Wales; 
Midlands; 
North-West; 
Yorkshire 

Extreme 
rainfall 

Hail; River 
flooding 

Eden,2008; 
Met Office; 
DFO 

122 2005   2005-10-11 2005-10-12 
North-West; 
Scotland; Wales 

Extreme 
rainfall River flooding 

Eden,2008; 
DFO 

123 2005   2005-11-11 2005-11-11 Wales 
Extreme 
rainfall River flooding DFO 

124 2006   2006-08-13 2006-08-13 

London; South-
West; South-
East 

Extreme 
rainfall River flooding Eden,2008 

125 2006   2006-10-25 2006-10-25 Scotland 
Extreme 
wind 

Extreme 
rainfall; River 
flooding 

Eden,2008; 
DFO 

126 2007   2007-01-06 2007-01-10 
North-West; 
Wales; Scotland 

Extreme 
rainfall River flooding Eden,2008 

127 2007 Kyrill 2007-01-18 2007-01-18 England; Wales 
Extreme 
wind   

Eden,2008; 
EM-DAT 

128 2007   2007-06-15 2007-06-21 

Nort-West; 
Wales; 
Yorkshire 

Extreme 
rainfall 

Broken Dam; 
River flooding 

Eden,2008; 
EM-DAT; 
DFO 

129 2007   2007-06-25 2007-07-03 All regions 
Extreme 
rainfall   

Eden,2008; 
EM-DAT; 
DFO 
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130 2007   2007-07-19 2007-07-20 West-Midlands 
Extreme 
rainfall River flooding 

Eden,2008; 
EM-DAT; 
DFO 

131 2007   2007-11-08 2007-11-09 Scotland 
Extreme 
wind Storm surge Eden,2008 

132 2008   2008-01-18 2008-01-21 
North-West; 
Wales; Scotland 

Extreme 
rainfall River flooding 

Eden,2008; 
EM-DAT; 
DFO 

133 2008 
Johann
a 2008-03-10 2008-03-10 All regions 

Extreme 
rainfall River flooding EM-DAT 

134 2008   2008-05-29 2008-05-29 South-West 
Extreme 
rainfall River flooding Eden,2008 

135 2008   2008-08-15 2008-08-16 

North-West; 
West-Midlands; 
East-Midlands 

Extreme 
rainfall River flooding DFO 

136 2008   2008-09-06 2008-09-08 

North-West; 
Wales; 
Yorkshire 

Extreme 
rainfall Rain 

EM-DAT; 
DFO 

137 2009 
Cumbri
a flood 2009-11-19 2009-11-22 North-West 

Extreme 
rainfall   

EM-DAT; 
Met Office; 
DFO 

138 2010 Xynthia 2010-02-28 2010-02-28 All regions 
Extreme 
rainfall   EM-DAT 

139 2010 

Cornw
all 
flood 2010-11-16 2010-11-17 South-West 

Extreme 
rainfall River flooding 

DFO; Met 
Office 

140 2012   2012-06-10 2012-06-11 All regions 
Extreme 
rainfall   EM-DAT 

141 2012   2012-06-23 2012-06-24 All regions 
Extreme 
rainfall   EM-DAT 

142 2012 
Superc
ell 2012-06-28 2012-06-29 

Midlands; 
Yorkshire 

Extreme 
rainfall Lightning; Hail Met Office 

143 2012   2012-09-23 2012-09-27 
North-East; 
Yorkshire 

Extreme 
rainfall Extreme wind 

EM-DAT; 
DFO 

144 2012   2012-12-23 2012-12-23 
South-West; 
Wales; Scotland 

Extreme 
rainfall   EM-DAT 

145 2013 

Storm 
Christia
n 2013-10-27 2013-10-28 All regions 

Extreme 
rainfall   EM-DAT 

146 2013 
Storm 
Xaver 2013-12-06 2013-12-07 

Wales; 
Yorkshire; East; 
Midlands 

Extreme 
wind River flooding 

EM-DAT; 
Met Office 

147 2013   2013-12-23 2013-12-25 

Midlands; 
South-West; 
Wales; Scotland 

Extreme 
rainfall Extreme wind Met Office 

148 2013 
Storm 
Dirk 2013-12-26 2013-12-27 South-East 

Extreme 
wind River flooding 

EM-DAT; 
Met Office 

149 2013   2013-12-30 2013-12-31 All regions 
Extreme 
wind   

EM-DAT; 
Met Office 

150 2014 
Storm 
Ulla 2014-02-14 2014-02-15 All regions 

Extreme 
wind River flooding EM-DAT 

151 2014 
Storm 
Berta 2014-08-10 2014-08-11 Scotland 

Extreme 
rainfall 

Extreme 
wind; River 
flooding Met Office 

152 2015 

Storm 
Desmo
nd 2015-12-04 2015-12-06 North-West 

Extreme 
wind River flooding EM-DAT 

153 2015   2015-12-26 2015-12-26 
North-West; 
Yorkshire 

Extreme 
rainfall   EM-DAT 

154 2016 
Storm 
Angus 2016-11-19 2016-11-22 

South; London; 
Wales 

Extreme 
rainfall Extreme wind Met Office 

155 2017   2017-11-22 2017-11-26 
Wales; North-
West 

Extreme 
rainfall   EM-DAT 
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156 2018 
Storm 
Eleanor 2018-01-02 2018-01-03 

Midlands; 
Wales; Scotland 

Extreme 
wind Storm surge EM-DAT 

157 2018 
Storm 
Hector 2018-06-13 2018-06-15 

Scotland; 
Wales; North-
West; Yorkshire 

Extreme 
rainfall 

Extreme 
wind; River 
flooding Met Office 

 


