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Résumé: La propagation des ondes sismiques
dans le sol est soumise a de nombreuses sources
d'incertitudes, allant de lactivité incertaine des
failles géologiques a notre connaissance imparfaite
des propriétés mécaniques a l'intérieur de la croGte
terrestre. Pour évaluer correctement l'aléa sis-
mique, il est donc essentiel de quantifier I'influence
des incertitudes sur lintensité des mouvements du
sol générés par les séismes.

Dans les zones a sismicité faible a modérée,
comme la plupart des régions de France métropoli-
taine, les enregistrements sismiques ne sont pas
suffisants pour évaluer les incertitudes des mou-
vements du sol. Dans cette situation, les simula-
tions numériques sont la seule option pour estimer
I'intensité du mouvement du sol, mais les colts
de calcul élevés rendent impossible la plupart des
analyses d'incertitude. Dans cette these, on pro-
pose un méta-modeéle qui permet de remplacer le
solveur numérique en réduisant considérablement
les colts de calcul tout en conservant sa flexibilité
et une précision satisfaisante.

On illustre tout dabord [linfluence des
hétérogénéités géologiques sur lintensité du
mouvement du sol dans le contexte du séisme
du Teil (Mw4.9, Ardeche, France, 2019). Des
hétérogénéités sont ajoutées a un modele
géologique régional sous la forme de champs aléa-
toires et on montre que le mouvement sismique
ainsi généré est plus réaliste. Cependant, les
hétérogénéités induisent également une grande

variabilité entre les réalisations.

Pour étudier cette variabilité de maniere sys-
tématique, on élabore une base de données de
30000 modeles géologiques hétérogenes en 3D
et a lintérieur de chaque géologie, des ondes
sismiques sont propagées a partir d'une source
aléatoire en utilisant le code d'éléments spectraux
SEM3D. La base de données est ensuite utilisée
pour entrainer le méta-modéle.

Notre méta-modéle est une extension de
'opérateur neuronal de Fourier appelée opérateur
neuronal de Fourier a entrées multiples (MIFNO).
Le MIFNO prend en entrée une géologie 3D et un
vecteur de parameétres de source pour prédire le
mouvement du sol en 3D. Le mouvement du sol
est un champ d'ondes enregistré a la surface du do-
maine en fonction du temps. Il est prédit en une
seule itération grace a une conversion profondeur-
temps. On caractérise ensuite l'erreur de pré-
diction du MIFNO et on explore sa capacité de
généralisation aux données hors de la distribution
d'entrainement.

Enfin, on utilise l'apprentissage par transfert
pour améliorer la précision du MIFNO dans le con-
texte du séisme du Teil. Avec ce méta-modeéle spé-
cifique, on obtient des distributions statistiques de
plusieurs quantités d'intérét pour l'aléa sismique.
Ces distributions sont cohérentes avec les simula-
tions numériques et fournissent des intervalles de
confiance qui étaient hors de portée avec les méth-
odes précédentes.
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Abstract: The propagation of seismic waves in the
ground is subject to many sources of uncertain-
ties, ranging from the uncertain activity of geolog-
ical faults to the incomplete knowledge of mechan-
ical properties inside the Earth’'s crust. To properly
assess seismic hazard, it then becomes essential to
quantify how uncertainties influence the intensity
of ground motion generated by earthquakes.

In areas with low-to-moderate seismicity, like
most regions in metropolitan France, seismic
records are too sparse to evaluate ground motion
uncertainties. In this situation, numerical simula-
tions are the only option to estimate ground motion
intensity, but their high computational costs pre-
vent most uncertainty analyses. In this thesis, we
design a surrogate model that can replace the nu-
merical solver by drastically reducing the computa-
tional costs while preserving its flexibility and a sat-
isfying accuracy.

We first illustrate the influence of geological
heterogeneities on ground motion intensity in the
context of the Mw4.9 Le Teil earthquake (Ardéche,
France, 2019). Heterogeneities are added to a re-
gional geological model in the form of random
fields, and we show that it generates more realis-
tic ground motion. However, heterogeneities also
lead to a large variability between samples.

To study this variability systematically, we build
a database of 30000 heterogeneous 3D geologi-
cal models, and inside each geology, seismic waves
are propagated from a random source using the
spectral element code SEM3D. The database is then
used to train a surrogate model in a purely data-
driven framework.

To design the surrogate model, we propose an
extension of the Fourier Neural Operator called the
Multiple Input Fourier Neural Operator (MIFNO).
The MIFNO takes as inputs a 3D geology and a vec-
tor of source parameters to predict 3D ground mo-
tion. Ground motion is a time-dependent surface
wavefield, but we do not need any time iteration
thanks to a depth-to-time conversion. We charac-
terize the MIFNO prediction error and explore the
MIFNO generalization ability to out-of-distribution
data.

We finally take advantage of transfer learning to
further improve the MIFNO accuracy in the context
of the Le Teil earthquake. With this fine-tuned sur-
rogate model, we obtain statistical distributions of
several quantities of interest in seismic hazard as-
sessment. They are coherent with numerical simu-
lations and provide confidence intervals that were
out of reach with existing methods.
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Résumé étendu

La propagation des ondes sismiques dans le sol est soumise a de nombreuses sources d'incertitudes, allant de
I'activité incertaine des failles géologiques a notre connaissance imparfaite des propriétés mécaniques a l'intérieur
de la cro(te terrestre. Pour évaluer correctement l'aléa sismique, il est donc essentiel de quantifier l'influence
des incertitudes sur l'intensité des mouvements du sol générés par les séismes. Dans les zones a sismicité faible
a modérée, comme la plupart des régions de France métropolitaine, les enregistrements sismiques ne sont pas
suffisants pour évaluer les incertitudes des mouvements du sol. Dans cette situation, les simulations numériques
sont la seule option pour estimer l'intensité du mouvement du sol, mais les colts de calcul élevés rendent impossible
la plupart des analyses d'incertitude.

On illustre tout d'abord l'influence des hétérogénéités géologiques sur l'intensité du mouvement du sol dans le
contexte du séisme du Teil (Mw4.9, Ardéche, France, 2019). Des simulations numériques sont réalisées dans une
région de 50 km x 115km avec deux modeles géologiques nationaux (un modele unidimensionnel, 1D, et un mod-
ele tridimensionnel, 3D) et deux modéles de source sismique (un point source et un modele de rupture dynamique
du plan de faille). Le code SEM3D basé sur la méthode des éléments spectraux est employé pour les simulations.
Les deux modeles géologiques permettent de reproduire les caractéristiques principales du mouvement du sol en-
registré. Cependant, le modéle unidimensionnel crée un guide d'ondes absent des sismogrammes et le modéle
tridimensionnel induit des amplitudes plus élevées que les données enregistrées du fait d'un manque de fluctua-
tions géologiques. Des hétérogénéités sont alors ajoutées au modele géologique unidimensionnel sous la forme
de champs aléatoires et on montre que le mouvement sismique ainsi généré est plus réaliste. En particulier, les
effets du guide d'ondes sont atténués par la présence des hétérogénéités. Cependant, les hétérogénéités induisent
également une grande variabilité entre les trois réalisations de champs aléatoires, ce qui montre la nécessité d'une
analyse quantitative de la variabilité ainsi obtenue.

Pour étudier cette variabilité de maniére systématique, on élabore une base de données de 30000 modeles
géologiques hétérogénes en 3D. Les modeles géologiques sont construits comme la superposition de couches
horizontales choisies aléatoirement, ce qui représente la structure 1D de la géologie. Ensuite, des champs aléa-
toires sont ajoutés indépendamment dans chaque couche. A l'intérieur de chaque géologie, une source sismique
ponctuelle est placée de maniére aléatoire avec une orientation aléatoire. Les ondes sismiques sont alors propagées
avec le code SEM3D, depuis la source jusqu'a la surface ou elles sont synthétisées par une grille de capteurs virtuels.
On constitue ainsi la base de données HEMEW®-3D de 30000 triplets (géologie 3D, propriétés de source, mou-
vements du sol en surface). Pour caractériser la base de données, plusieurs définitions de la dimension intrin-
seéque des données sont explorées : I'analyse en composantes principales, une estimation a partir du maximum
de vraisemblance, la dimension de corrélation et un indice de similarité structurelle. Si les valeurs de la dimension
intrinséque fluctuent grandement selon les méthodes, il apparait néanmoins clairement que les données sont de
grande dimension. La base de données HEMEWS®-3D est ensuite utilisée pour entrainer le méta-modele, ce qui
constitue le coeur de cette these.

Notre méta-modeéle est une extension de 'opérateur neuronal de Fourier appelée opérateur neuronal de Fourier
a entrées multiples (Multiple Input Fourier Neural Operator, MIFNO). Le MIFNO prend en entrée une géologie 3D et un
vecteur de parametres de source pour prédire le mouvement du sol en 3D. Le premier point important du MIFNO
est d'utiliser une architecture factorisée dans laquelle les transformées de Fourier sont effectuées séparément sur
les trois axes. Cela permet de traiter des données 3D avec un nombre de parametres raisonnable. Deuxiemement,
le mouvement du sol est un champ d'ondes enregistré a la surface du domaine en fonction du temps. Il est prédit en
une seule itération grace a une conversion profondeur-temps. Ainsi, le MIFNO prédit la solution d'une équation aux
dérivées partielles en 3D dépendant du temps sans nécessiter de variables en quatre dimensions. La conversion
profondeur-temps évite également le recours a des méthodes auto-régressives qui ont tendance a diminuer la
précision en temps long. La troisiéme caractéristique du MIFNO est de contenir une branche dédiée pour la source.
On peut ainsi considérer un vecteur quelconque de paramétres de source sans étre contraint par la structure 3D



des géologies, ce qui n'était pas possible avec les opérateurs neuronaux existant auparavant.

Aprés avoir entrainé le MIFNO sur la base de données HEMEW®>-3D , on illustre sa capacité de prédiction sur des
données de test. Lerreur de prédiction est quantifiée avec plusieurs métriques pour analyser différentes propriétés
physiques. En particulier, des métriques de biais fréquentiel montrent que les erreurs sont plus importantes sur
les composantes hautes fréquences du mouvement du sol, ce qui est cohérent avec le biais spectral des réseaux
de neurones. De plus, des critéres de Goodness-Of-Fit habituels en sismologie montrent que les prédictions sont
généralement excellentes pour la phase, ce qui traduit des temps d'arrivée précis, et elles sont bonnes a excellentes
pour l'enveloppe, ce qui indique la précision sur les amplitudes prédites. Le MIFNO est également capable de
généraliser les prédictions a des géologies hors de la distribution d'entrailnement, comme illustré avec le modéle
géologique de Marmousi, ainsi qu'a des sources placées hors du domaine d'entrainement.

Enfin, on utilise I'apprentissage par transfert pour améliorer la précision du MIFNO dans le contexte du séisme
du Teil. Dans ce cadre, une base de données de 4000 simulations est réalisée avec des géologies dérivées du modeéle
géologique 1D de référence pour la région du Teil et des caractéristiques de source cohérentes avec la faille ayant
généré le séisme du Teil. La base de données contient moins de réalisations que la base de données générique
HEMEW>-3D car sa variabilité est plus faible. Le MIFNO pré-entrainé est alors spécialisé avec les réalisations de la
base de données du Teil, ce qui améliore ses précisions. On montre qu'environ 500 simulations spécifiques sont
nécessaires pour obtenir d'excellentes prédictions. Par application du principe de superposition des sources, le
MIFNO fournit d'excellentes prédictions pour la rupture dynamique de la faille, bien que les caractéristiques spatiales
et temporelles du mouvement du sol soient plus complexes que dans le cas d'un point source. Avec ce méta-modeéle
spécifique, on obtient également des distributions statistiques de plusieurs quantités d'intérét pour I'aléa sismique,
en particulier I'accélération pseudo-spectrale. Ces distributions sont cohérentes avec les simulations numériques,
ce qui montre la fiabilité du MIFNO dans un cadre statistique. Grace a la rapidité du MIFNO, il est possible d'obtenir
rapidement plusieurs centaines de milliers de prédictions. On en déduit alors des intervalles de confiance qui étaient
hors de portée avec les méthodes précédentes. On propose également une premiéere application pour conditionner
les parameétres de source et de géologie a partir d'observations fictives.

En conclusion, cette thése a proposé un méta-modele pour la propagation des ondes sismiques dans des do-
maines tridimensionnels. Le méta-modéle générique est précis, applicable a un grand nombre de configurations et
capable de généraliser a des données hors de la distribution d’entrainement. |l peut étre spécialisé pour des con-
textes spécifiques avec des colts de calcul réduits grace au transfert d'apprentissage. Cela permet ainsi des études
de quantification d'incertitudes avec des colts énergétiques divisés d'un facteur 100 par rapport a l'utilisation exclu-
sive des simulations numériques.



Introduction

Devastating earthquakes regularly remind us of the vulnerability of infrastructures to extreme natural hazards. In
2011, the Tohoku earthquake (Japan) generated a tsunami that led to a major nuclear accident at the Fukushima-
Daichi power plant. In response, nuclear authorities worldwide requested new safety analyses of the existing struc-
tures. In France, this gave rise to the SINAPS@ project (2012-2017), which was devoted to the full evaluation of
seismic safety from the earthquake source to the infrastructure, and the characterization of uncertainties (Berge-
Thierry et al. 2020). In parallel, the SIGMA (2012-2017) and SIGMA-2 (2017-2022) projects involved 30 European
partners with the aim to improve the modelling of seismic ground motion and, similarly to SINAPS@, reduce uncer-
tainties (Pecker et al. 2017). Despite numerous achievements in the evaluation of ground motion, the development
of numerical tools to simulate earthquakes, and propositions of new regulations, both projects showed that a proper
quantification of uncertainties was beyond reach with the existing framework (Berge-Thierry et al. 2020).

On November 11, 2019, an earthquake of magnitude My 4.9 hit the Le Teil village in South-Eastern France,
damaging more than 900 houses and buildings. This is the most destructive earthquake felt in metropolitan France
since the Arlette earthquake (Pyrenees) in 1967 (Ritz et al. 2020), and it raised several questions about the adequacy
of regional ground motion estimates. Indeed, the Le Teil surroundings were considered a low-seismicity region, and
few earthquakes had been recorded since the deployment of seismic instruments (from 1962 in France, Duverger
et al. 2021). In addition, the Le Teil earthquake occurred within the Rhone valley, in the vicinity of several industrial
installations, including the Cruas and Tricastin nuclear power plants, respectively 14km and 20 km away from the
epicenter. Installations of the French Alternative Energies and Atomic Energy Commission (CEA) are also located
within the Rhéne valley and the CEA is responsible for the assessment of seismic hazard around its installations
(Régle fondamentale de sdreté n°2001-01). For these reasons, the Le Teil earthquake called for new seismic hazard
investigations in low-to-moderate seismicity regions and is one of the motivations of this doctoral thesis.
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Figure 0.1: Map of seismic hazard in France, colored by five intensity zones (credit: Ministry of ecological transition)
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From seismic hazard to physics-based simulations

Assessing seismic hazard amounts to determining the ground motion intensity that could be reached at a given
location with a defined return period. A typical question can be formulated as “What is the maximum ground
motion acceleration that has a 10% probability of being observed in the next 50 years in this region?” Seismic
hazard assessment is, therefore, strongly related to probabilistic evaluations, and, as such, it requires large amounts
of data to derive meaningful distributions of ground motion intensities. Thanks to a massive deployment of seismic
sensors worldwide, large datasets of recorded earthquakes are now available (the ESM database in Europe (Luzi
et al. 2016), the NGA-West 2 database of crustal events in active tectonic regions (Ancheta et al. 2012), the K-Net and
KikNet databases in Japan (C. Zhu et al. 2021), etc.). These datasets have led to a wide variety of Ground Motion
Models, also called Ground Motion Prediction Equations (GMPEs), that estimate ground motion intensity from the
earthquake parameters and geological characteristics at the site of interest. GMPEs are the most common method
to estimate seismic hazard but have several limitations.

In low-to-moderate seismicity regions such as most of metropolitan France, datasets of recorded ground motion
are too sparse to inform GMPEs. Then, the only option is to use numerical simulations to complement recorded
earthquakes. Thanks to a continuous increase in computational resources and improvements in numerical schemes
over the last decades, physics-based earthquake simulations have reached a high level of fidelity. They now enable
the simulation of past earthquakes with complex physical phenomena (dynamic fault rupture, realistic geological
properties, three-dimensional wave propagation, etc.). As an illustrative example, high-fidelity simulations have
been conducted for the 1976 M,y 7.6 Tangshan earthquake (China, H. Fu et al. 2017; W. Zhang et al. 2019), the 1992
Mw 7.3 Landers earthquake (United States of America, Heinecke et al. 2014), the 2005 My, 7.6 Kashmir earthquake
(Pakistan, Khan et al. 2020). The Le Teil earthquake has also been simulated with different numerical settings (El
Haber et al. 2021; F. Lehmann et al. 2022; Smerzini et al. 2023).

However, large-scale three-dimensional (3D) simulations require huge computational costs, on the order of tens
of thousands of scalar CPU hours (Central Processing Unit hours, total time of all cores in the parallel simulation).
In seismic hazard analyses, ground motion must be assessed for a large number of potential seismic sources and a
wide variety of geological properties. Conducting these analyses with 3D physics-based simulations would require
multiple calls to the earthquake simulator. But due to their prohibitive computational costs, high-fidelity simulations
cannot be used directly to assess seismic hazard.

Scientific machine learning to design surrogate models

Thanks to the large datasets of ground motion records, machine learning has a long tradition in seismology (Mousavi
and Beroza 2023). In particular, analytical GMPEs can be replaced by deep neural networks to offer more flexibility
to ground motion predictions. However, these methods still depend on the quantity of recorded data in the region
under study and are of limited use in low-to-moderate seismicity regions.

Recent developments in deep learning offer new perspectives to replace physics-based simulations with surro-
gate models that preserve the accuracy of simulations while drastically reducing computational costs (Z. Li et al.
2020; Lu et al. 2021; Brandstetter et al. 2022). In this work, we define a surrogate as a numerical model that has
the same inputs as the parameters of the physics-based simulations and that estimates ground motion at any loca-
tion and time without fully resolving the wave propagation equation. It is important to emphasize that the surrogate
model should predict time series and not only one measure of ground motion intensity. The need for the full ground
motion history in non-linear structural dynamic analysis and earthquake engineering justifies this major difference
with GMPEs.

The intersection between physics-based simulations and deep learning has given rise to the field of Scientific
Machine Learning (SciML). One prominent method in SciML is the Fourier Neural Operator (FNO, Z. Li et al. 2021) that
- in a concise and oversimplified summary - predicts the solution of a Partial Differential Equation (PDE) by learning
its representation in the frequency space of Fourier coefficients. Soon after the introduction of the FNO, Y. Yang
et al. 2021 showed that it could predict the solution of the two-dimensional (2D) acoustic wave equation. These
works and many others inspired us to direct our research towards a FNO-based surrogate model of seismic wave
propagation.

In F. Lehmann et al. 2023, we proposed the first FNO application to predict the solution of the 3D elastic wave
equation. This work and the followings build on large datasets of physics-based simulations (F. Lehmann et al.
2024a) that enable the surrogate model to learn the simulation outputs when provided with the simulation param-
eters. Then, a faster FNO was proposed by Tran et al. 2023, and we showed that this surrogate model significantly
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improves the prediction accuracy (F. Lehmann et al. 2024b). However, none of the existing works allowed to vary
the earthquake source, which severely restricts the applicability of the surrogate model. To address this limit, we
proposed a Multiple Input Fourier Neural Operator (MIFNO) that considers the dependency on both geological prop-
erties and source parameters when predicting ground motion.

Quantifying and propagating uncertainties

A common objective of the SINAPS@ and SIGMA projects was to characterize, quantify, and ultimately reduce the
numerous uncertainties in seismic hazard estimates. The earthquake source is the first uncertain parameter. In
intraplate regions, earthquakes mainly occur on geological faults that are well identified. However, the Le Teil earth-
quake occurred on the La Rouviere fault, whose seismogenic activity was ill-defined (Marconato et al. 2022). After
identifying the fault, the location of the rupture and its dynamic along the fault are also difficult to characterize.
Nevertheless, the influence of the earthquake source uncertainties on ground motion is often studied, for instance
by simulating different fault rupture scenarios of the Le Teil earthquake (Causse et al. 2021) or by running sensitivity
analyses on the source location (Laporte et al. 2024).

Figure 0.2: Sources of uncertainties in seismic hazard assessment: position and characteristics of the earthquake
source, mechanical properties of the Earth's crust (including geological heterogeneities), geological singularities that
create site effects.

Another source of uncertainties concerns the properties of the propagation domain. Seismic waves propagate in
three dimensions, over long distances, and in deep heterogeneous materials where measurements are challenging
or even impossible. Although geological models provide essential information on the material properties, they are
only an approximation of the Earth’s mechanical characteristics. Geological fluctuations impact the propagation of
seismic waves between the source and the surface, resulting in different ground motion time series at neighbouring
locations (R.-S. Wu and Aki 1988). Yet localized peculiarities, such as the presence of a sedimentary basin, can also
greatly amplify seismic waves and lead to severe damage (Kawase 2003). These site effects constitute a significant
concern in seismic hazard analyses, and a 3D physics-based surrogate model is one approach to quantifying their
influence.

Finally, model uncertainties must be quantified. High-fidelity simulations rely on assumptions that differ from
the propagation of waves in reality, for instance, through the implementation of boundary conditions to mimic
an infinite propagation domain. The accuracy of numerical solvers is also limited by the available computational
resources, implying for instance that high frequencies cannot be resolved numerically. Numerical errors are also a
potential source of uncertainties. Then, when using a surrogate model to replace simulations, the approximation
error should be added to the other sources of uncertainties.

If previous works (e.g. within the SINAPS@ and SIGMA projects) have greatly improved the identification of
uncertainties, propagating them from their different sources to the resulting ground motion requires an efficient
and accurate model that includes a detailed description of the earthquake source and the 3D geological properties.
Using the Le Teil earthquake as a case study, we show that our MIFNO surrogate model is a promising tool towards
this objective.
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Outline of the thesis

Chapter 1 presents the computational framework of this thesis. All earthquake simulations are conducted with
SEM3D, an open-source code developed in collaboration between the CEA, CentraleSupélec, and IPGP (Touhami
et al. 2022). SEM3D solves the elastic wave equation in 3D heterogeneous media, thanks to the Spectral Element
Method. The main simulation parameters are introduced from a seismological perspective, and their implementa-
tion is detailed. We focus on the description of the earthquake source, which is at the origin of seismic waves, and
the geological model since it characterizes the properties of the propagation domain and controls the wave prop-
agation. In this chapter, we also present our simulations of the Le Teil earthquake, emphasizing the importance of
geological heterogeneities to reproduce realistic ground motion.

Chapter 2 presents our database of seismic simulations that was used to train the surrogate model. Its ground
motion characteristics are analyzed and we provide insights on the intrinsic dimension of the data. The high dimen-
sions justify that traditional surrogate models are not suitable to predict space- and time-dependent ground motion
from 3D highly heterogeneous geological parameters and varying earthquake sources. In an attempt to reduce
the data dimensionality, two common approaches are explored and compared, namely the Principal Component
Analysis (PCA) and a deep neural network called UNet auto-encoder.

Chapter 3 reviews state-of-the-art surrogate models to predict the solution of parametric PDEs. It introduces
the FNO methodology and exposes our MIFNO surrogate model. From a 3D geological model, a description of
the earthquake source position and orientation, the MIFNO predicts the ground motion wavefield at the surface of
the propagation domain. The MIFNO predictions are assessed with different metrics and several architectures are
compared to exhibit optimal hyperparameters. We also highlight relationships between input parameters and the
prediction accuracy that help to understand situations where the surrogate model can give the best predictions.
Generalization to corrupted and out-of-distribution data is also investigated.

In Chapter 4, we focus on the application of our surrogate model to the Le Teil earthquake. We illustrate the
benefits of transfer learning to improve the predictions in a target region. In particular, ground motion generated
by a extended fault source is predicted with our surrogate model. Then, we quantify the influence of geological
uncertainties on ground motion and show that our surrogate model provides meaningful distributions of ground
motion intensity measures. Thanks to the speed of the MIFNO predictions, we also propose a first application of
parameter conditioning based on fictive observations and provide confidence intervals of ground motion intensities.
Throughout this thesis, we estimate the energy consumption of the various methods and highlight the benefits of
our surrogate model in this respect.
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Chapter 1

Physics-based earthquake simulations

In low-to-moderate seismicity regions, numerical simulations are necessary to complement recorded ground motion
data. They rely on numerical schemes to solve the wave propagation equation, namely the elastic wave equation.
This equation describes the motion of particles in an elastic medium defined by its mechanical properties when
particles are subject to an external force such as an earthquake source. Among the existing numerical schemes,
the Spectral Element Method (SEM, Faccioli et al. 1997; Komatitsch and Tromp 1999) has several advantages in
computational seismology and constitutes the backbone of our work (Section 1.1).

Several factors determine the accuracy of earthquake simulations. One crucial parameter is the 3D description
of the mechanical properties of the Earth, which we refer to as a geological model (Section 1.2). Due to the difficulty
of conducting geophysical measurements, the geological model is often poorly known and too simplistic. When
seismic waves propagate through the geological model, this can result in significant discrepancies between the
synthetic and recorded seismograms. One standard method to account for geological uncertainties consists in
adding random fluctuations to the reference geological model. Depending on the random fields characterization,
seismic waves encounter different perturbations and can be rendered more realistically by numerical simulations.

Second, the design of the simulation mesh also influences the accuracy of ground motion. One aims at high-
frequency simulations to approach the needs of structural engineering, but this leads to many degrees of freedom.
In addition, earthquake simulations are run on large spatial scales to encompass the seismic source and distant
areas that can encounter high ground motion intensities. These two factors lead to high computational costs that
make large-scale simulations very demanding. Table 1.1 references some large-scale high-frequency earthquake
simulations, and their limited number indicates the difficulty of conducting these simulations.

These challenges are illustrated with our simulations of the Le Teil earthquake. We use two geological models,
namely a 1D national and a 3D regional geological model. Two parametrizations of the earthquake source are also
compared: a kinematic fault rupture model and an equivalent point-wise source. Although the overly simplistic
geological models are able to capture only the main ground motion features, we show that adding geological het-
erogeneities can produce more realistic synthetic seismograms (Section 1.4). This work was published in F. Lehmann
et al. (2022). “Machine Learning Opportunities to Conduct High-Fidelity Earthquake Simulations in Multi-Scale Het-
erogeneous Geology”. In: Frontiers in Earth Science 10. ISSN: 2296-6463. DOI: 10.3389/feart.2022.1029160.

Table 1.1: Non-exhaustive summary of large-scale high-frequency earthquake simulations. fi,q. is the maximal
frequency accurately resolved. See Poursartip et al. 2020 for additional references

Reference Case study Domain size fmaz
Heinecke et al. 2014 | 1992 My, 7.3 Landers earthquake (USA) - 10Hz
Maufroy et al. 2016 19 earthquakes in the Mygdonian basin (Greece) | 69km X 69km x 30km 4Hz
H. Fu et al. 2017 1976 My, 7.6 Tangshan earthquake (China) 320km x 312km x 40 km 18 Hz
W. Zhang et al. 2019 | 1976 My, 7.6 Tangshan earthquake (China) 320km x 320 km x 40 km 7.3Hz
Khan et al. 2020 2005 My, 7.6 Kashmir earthquake (Pakistan) 40km x 40km x 40km 5.5Hz
Touhami et al. 2022 2014 M,y 6.0 Cephalonia earthquake (Greece) 44km X 44km x 63km 10Hz
Smerzini et al. 2023 2019 My, 4.9 Le Teil earthquake (France) 45km x 70km x 8.5km 8Hz
this work 2019 My, 4.9 Le Teil earthquake (France) 50km x 115km x 38 km 5Hz
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1.1 Numerical simulations in seismology

Seismic waves are a type of mechanical waves that are generated by a disturbance in the solid Earth. Although
earthquakes are the most obvious source of seismic waves, they can also originate from other sources such as
volcanic tremors, mining, explosions, noise from railroads, etc. The propagation of seismic waves inside the Earth
obeys the elastic wave equation, which is introduced below.

1.1.1 Wave propagation equations

In a solid Q C RY, the propagation of disturbances generates particle motion in several directions, implying that
the displacement w is a vector : w : Q x [0, 7] — R?, with [0, T] being the temporal interval. The displacement is
governed by the elastic wave equation, for which two equivalent formulations are (the derivation can be found, for
instance, in Shearer 2019, p.40-44)

0*u
where o(u) = C : Vu is the stress tensor depending on the elasticity tensor C, and
3211, T
P — VAV -u) = Vit |[Vu + (Vu) ] — A+ 20)V(Vou) +uV x Vxu=Ff (1.2)

In equation 1.2, the material is described by three parameters: its density p and the Lamé parameters A, p. In
heterogeneous media, they all depend on the spatial point « € 2. The right-hand side f : (x,t) — R is an external
body force (detailed in Section 1.1.3)and u : (x,t) — R< is the solution of the elastic wave equation, written as a
displacement. From the parameters (p, A, 1), one can express the velocity of compression waves (P waves, Vp ) and

shear waves (S waves, Vs ) through
A+2
=2 Vs—\f (1.3)

The analysis of P and S waves is of practical importance in seismology and our results will often be discussed in
terms of P and S waves components. Equation 1.3 especially implies that the velocity of P-waves is always higher
than the S-wave velocity (see Fig. 1.1 where P waves arrive before S waves).

Acceleration at station OGDF (R=32km)
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Figure 1.1: Acceleration recorded at station OGDF during the Le Teil earthquake, located 32 km away from the epi-
center (more details in Section 1.4). Sub-panels show the East-West (E), North-South (N), and vertical (Z) components.
Arrows indicate the approximate arrival time of P and S waves, as well as the coda.

Because it is the most general and accurate, the elastic wave equation 1.2 is the main focus of this work. How-
ever, beyond the case of an infinite homogeneous medium or some forms of approximations, analytical solutions
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do not exist and numerical approximations are sought after. It is also important to note that the wave equation is
not linear with respect to the material parameters, although it is linear with respect to the source.

Due to the hyperbolicity of the elastic wave equation, it is challenging to obtain accurate numerical solutions.
The wave equation is a prototypical example of hyperbolic equations. Other examples include the linear advection

equation % + ag—g = f and the Burger's equation %1; + u% = V%. In hyperbolic equations, information
travels at a finite speed, referred to as the wavespeed. This means that points where the wave has not yet arrived
have received no information. Hyperbolic equations are also characterized by the propagation or appearance of
discontinuities, controlled by the initial and boundary conditions. Hyperbolicity therefore often results in solutions

with high complexity (Thomas 1995).

Before explaining the numerical scheme used to solve the elastic wave equation, one should mention other
forms of wave equations that will be encountered in the deep learning literature review (Section 3.1). First, the
Helmholtz equation is obtained by taking the Fourier transform in time (denoted JF or") of the acoustic equation.
When propagation involves a scalar quantity up : (x,t) — R (e.g. pressure field or P waves only) instead of a
vector, the wave equation is restricted to the acoustic equation

0%u
p(@) g (@.1) =V - (u(@)Vup(x. 1) = f(@,1) (1.4
Let us define u(x, w) as the Fourier transform of w at point & and circular frequency w, and recall that 7 <‘3%‘) (w) =
— w?F(u)(w). Then, the Helmholtz equation reads
plE)wi(e,w) +V - (@) Vi(z,w) = —f(2,w) (1.5)

Equation 1.5 is an elliptic equation, implying that its solutions are smooth, even if the initial and boundary conditions
are rough (although there may be singularities at sharp corners). Therefore, solving the elastic wave equation or the
Helmholtz equation involves different complexities.

Another form of the wave equation is given by the eikonal equation. It is a high-frequency approximation of
the elastic wave equation, leading to a time-independent first-order non linear hyperbolic PDE. It is often used to
describe the traveltime of waves from the source to any point in the domain.

1.1.2 Physics-based simulations with SEM3D

Numerically solving the elastic wave equation requires a discrete approximation of the problem, both spatially and
temporally. Several discretization schemes exist and have been used for the wave equation, such as the finite differ-
ence method, pseudospectral methods, boundary element methods, finite element method, etc. A methodological
review can be found in Seriani and Oliveira 2020 and references of early work are given in Komatitsch and Tromp
1999. The Spectral Element Method (SEM, Faccioli et al. 1997; Komatitsch and Tromp 1999) is a special type of finite
element method, well-used for wave propagation problems. The computational code SEM3D, originally developed
by the CEA, CentraleSupélec, and IPGP relies on the SEM and constitutes the backbone of this work (Touhami et al.
2022). In the following, we describe the main ideas of the SEM and its implementation in SEM3D. More details can
be found in the works referenced below.

The SEM does not solve directly the elastic wave equation 1.1. Instead, this equation is integrated against any
test function ¢ : Q2 — R? to give the weak formulation of the wave equation (Komatitsch and Tromp 1999, eq. 12)

/(qub-@fud?’m:—/QV(;S:o-(u)dga:—/gqb-fdgm—l—/rp(o'(u)-ﬁ)-¢d2m (1.6)

The boundary of the spatial domain €2 is separated into a stress-free surface 9€2;,,, (usually the upper surface) and
an absorbing boundary I' which mimics a semi-infinite domain (waves going through I'" are supposed to escape the
domain, Fig. 1.2). In equation 1.6, 7 is the outward unitary vector normal to the boundary surface I'. The upper sur-
face 0€2,, does not appear in the integration since this stress-free surface must satisfy o(u) - 7 = 0. Therefore,
this boundary condition is necessarily satisfied when satisfying the weak formulation of the wave equation 1.6.

In the SEM, the spatial domain €2 is discretized in a mesh of hexahedral elements {,}, and similarly, the
boundary I is discretized with the corresponding quadrilateral elements {I'y};. Then, the wave equation 1.6 can
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Figure 1.2: Schematic illustration of the spatial domain 2 divided into mesh elements {Q,},. 0 is the upper
surface boundary and I' contains all the other boundaries.

be solved in parallel in each mesh element (with points common to several elements managed carefully), which
considerably reduces the computational time.

Computing integrals as in equation 1.6 is always a computational challenge. One solution is to use quadrature
points and compute the integral as the sum over the function value at the quadrature points. First, notice that each
mesh element €, is isomorphous to the reference cube [—1, 1]2. This implies that any function ¢ evaluated at point
x = (x,y,2) € , can be expressed in terms of points (Z,9,2) € [~1,1]3 and the element-wise function ¢.
Integrals can then be rewritten as

o) o= [ 6u@.5.9)05,5.) drdj dz (1.7)
Qaq [-1,1]3

where J, is the Jacobian expressing the change of coordinates between [—1, 1]3 and §2,. One specific feature of the
SEM is that the quadrature points are chosen as the Gauss-Lobato-Legendre (GLL) points, defined as the roots of
(1 — 2?)P! (%) = 0where P, is the Lagrange polynomial of degree n. If the GLL points are denoted Zg, - - - , &,
along the x axis and similarly o, - - - , 4y and 2y, - - - , 2, along the y and 2 axes, the integral in equation 1.7 can be
approximated by

/[ 3 ¢a(i‘7g> Z)Ja(ivg7 2) dz d:lj dz ~ § wzw]wk¢a(jlag]>zk)Ja(jlag]72k) (1.8)
—1,1 L5
’ 1,7,k=0

where w;, w;, wy, are the weights associated with the GLL points and can be pre-computed.
From these developments, the displacement is expressed at each grid point ., as a global vector U = (u(zm,))m
and the global system is written in the form

MU + F"™(U;U) = Fe*! (1.9)

where M is the mass matrix, F*" the matrix of internal forces, and F**! the external force matrix. The coefficients
of those matrices are found by inserting the integral expression 1.8 into the weak formulation 1.6. One advantage
of the SEM on the basis of Lagrange polynomials is that the mass matrix is diagonal, meaning that its inversion is
computationally cheap.

Equation 1.9 involves time derivatives that also need to be discretized temporally. The temporal discretization is
a velocity leap-frog scheme, where the velocity U at time t,, is approximated by U,, ~ U(t,,) and is computed from
Un+1 - U

Mt (U5 Ua) = B (1.10)

The elastic wave equation is solved with initial conditions u(x,¢ = 0) = 0 and %—“t‘(m,t = 0) = 0 to reflect that
the medium is at rest before the seismic event. One should also note that the leap-frog scheme is conditionally
stable with a Courant-Friedrichs-Lewy (CFL) stability condition determined by the size of the mesh elements and
the maximum wave velocity (i.e. the P-wave velocity). This means that the time step becomes very small when small
mesh elements are needed and the P-wave velocity is large. This leads to a large number of time iterations and
therefore a high computational time.
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Design of the mesh

Although the computation of the time step is managed automatically in SEM3D from the CFL value imposed by
the user (CFL=0.2 in this work), the design of the mesh is left to the user and has a crucial importance. The mesh
elements should be small enough to accurately represent the material properties and the propagation of waves. In
the meantime, the computational time increases with the number of elements, meaning that we aim for elements
as large as numerically possible.

The most constraining factor is the accurate representation of the wave propagation. Following (De Martin
2011), at least 5 GLL points should be used to discretize the minimum wavelength propagating inside the domain.
The minimum wavelength A,,;, depends on the minimum wave velocity, i.e. Vg ., and the maximum frequency
of the waves one aims at representing, f;,qz, following

VS,min

min —
fmaac

The element size can be increased if the number of GLL points Ngyy, is larger than 5 since the distance between
quadrature points will remain of the same order. Therefore, the mesh element size Ax is computed with

A (1.11)

Narr Narr Vsmin
Ax — P v 1.12
TS 5 fonar 112

The material properties detailed in Section 1.2 will be designed in accordance with the mesh element size.

It was mentioned earlier that the domain 2 is delineated by an absorbing boundary I'. This allows to approxi-
mate the propagation of waves in a semi-infinite domain where waves hitting the absorbing boundary should escape
the domain and no longer influence the propagation inside the domain. SEM3D employs the Perfectly Matched Lay-
ers (PML) as absorbing boundary conditions (Berenger 1994; Festa and Vilotte 2005). This means that layers of mesh
elements are added on the boundary of the domain and the amplitude of the incident wave is exponentially reduced
inside the PML. When hitting the external PML boundary, the wave amplitude is negligible, so that no reflecting wave
can be seen.

SEM3D has been validated for different benchmarks (Touhami 2020), widely employed to simulate past earth-
quakes (Touhami et al. 2021), and to assess the seismic response of nuclear sites and urban areas (Gatti et al. 2018;
Korres et al. 2022). Therefore, under the assumption that the input parameters are accurate, numerical results of
SEM3D reflect the reality. In the following, results of SEM3D simulations are sometimes referred to as ground truth,
in opposition with the prediction of the surrogate model. This term implies simulated ground truth.

1.1.3 Modelling earthquake sources

The elastic wave equation 1.2 involves a source term f(x,t) that describes the distribution of force density acting
on a point & at time ¢. The simplest description of the source is a point-source located at x5 € (), with a time
evolution described by the seismic moment function M (¢). The seismic moment function is a time-dependent
3 X 3 symmetric tensor describing the forces acting at the source location. The point source expression can then
be written

flx,t) =V - (M(t)é(x — xs)) (1.13)

Itis well-known that the far-field components of ground motion are proportional to the time-derivative of the seismic
moment function (see e.g. Madariaga 2015, eq. 21). Knowing that the geometry of the point source is generally

independent from its temporal evolution, it is then convenient to describe the moment rate function %(t) as
dM
— (1) = Mis(1) (1.14)

where s(t) is the source time function and M is the seismic moment
Macac M;L’y Macz

M= | My, M, M, (1.15)
sz M:py Mzz
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The component M;; corresponds to the action of two point forces parallel to the ¢ axis (with opposite signs) and
separated by a small distance in the j direction. In particular, the diagonal elements represent force dipoles while
the off-diagonal elements correspond to force couples.

When an earthquake is generated by a fault rupture, the seismic moment function describes the slip history
along the fault. Then, the moment tensor can be parametrized by four variables characterizing the rupture process
(Aki and Richards 2002):

* the scalar seismic moment My (unit N.m),

+ the dip angle of the fault ()

+ the strike angle of the fault with respect to the north (¢)

+ the rake angle of the fault (A\), which is the angle of the slip vector with respect to the horizontal

Strike

Figure 1.3: Description of a fault from its dip (), strike (¢), and rake (\) angles. Figure extracted from Shearer 2019

In this work, faults are parametrized either with their three descriptive angles or with the moment tensor com-
ponents. Equivalences between the two representations are obtained through (Aki and Richards 1980)

=

ve = —Mp(sin 6 cos Asin(2¢) + sin(26) sin A sin? ¢)
y = Mo(sin & cos A cos(2¢) + 0.5sin(25) sin Asin(2¢))
= —Mp(cos d cos A cos ¢ + cos(20) sin A sin ¢)
— My (sin 6 cos Asin(2¢) — sin(26) sin A cos? ¢)
= —Mp(cos d cos Asin ¢ — cos(29) sin A cos ¢)
= My (sin(20) sin A)

I3

(1.16)
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Source time function

The source time function describes the temporal evolution of the earthquake process. As such, it provides rich
information to seismologists about the fault rupture duration and its frequency content. Assuming a simple linear
slip of the fault leads to the ramp seismic moment function depicted in Fig. 1.4a whose source time function is a
boxcar function. The boxcar length is equal to the rise time 7 of the fault, i.e. the time to evolve from the initial state
to the final state. It is known that small faults lead to shorter rise times, hence, source time functions that are closer
to a Dirac impulse (Fig. 1.4b).

Fortunately, the numerical analysis of source time functions is made easier by the introduction of the Green
function G'az ., ¢, (2, t), which is the fundamental solution of the elastic wave equation 1.2 when the source is an
impulse point force located at s and occurring at t = 2o,

Fla,t) =V - (M(t — to)d(z — ) (1.17)
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Figure 1.4: Seismic moment functions M (t) of a simple ramp (a) and a Heaviside step (b). The associated source

time functions are proportional to the moment rate function %(t}.

For any source time function s(t), the general solution of the elastic wave equation 1.2 is then obtained from the
convolution of the Green function with the source time function

w(x,t) = Gprrmg (1) * s(t) (1.18)

Assuming that the solution u; of the elastic wave equation is known for a given source time function s; and provided
that the moment tensor M remains the same, it is easy to obtain the solution us for any new source time function
$2. The steps are as follows:

1. compute the Fourier transform of the original source time function §; := F(s;) and the solution @y := F(u1)

A U
derive the Green function in the frequency domain G| = =

S

compute the Fourier transform of the new source time funcltion S9
compute the new solution in the frequency domain g = G1 * 89

5. deduce the new solution in the temporal domain ug = F~! (i2)
This procedure is illustrated in Fig. 1.5, starting from a spice bench seismic moment function Mj. It is often used to
describe the temporal evolution of a typical point source and is used as the reference source time function in this
work. The solution w4 is simulated with SEM3D (Fig. 1.5a). The associated Green function G allows to reconstruct
the solution for a new seismic moment function M. Figure 1.5b shows that the reconstructed solution G * so
perfectly matches the true solution us.

Although the temporal evolution of the solution is crucial, the Green function approach explains that the tem-
poral evolution of the source can be fixed when designing the metamodel (Chap. 3). In Chapter 4, convolutions are
employed to obtain predictions for different source time functions.

H N

1.2 Geological models and their uncertainties

Numerical simulations require a description of the material properties: density p, S-wave velocity Vs and P-wave
velocity Vp , that together define a unique elastic wave equation 1.2. These properties correspond to the mechanical
behaviour of rocks inside the Earth crust, from the surface to several dozens of kilometers depth, on all the spatial
extend of the region under study (on the order of 102 to 10*km?). Hence, it is extremely difficult to measure the
material properties in the whole study domain and one needs to rely on models with different levels of fidelity.

In this section, we give a brief overview of some types of geological models commonly used in seismic numer-
ical simulations to highlight their strengths and limitations. In particular, we focus on the modelling of geological
heterogeneities to ensure that our data are as realistic as possible.
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Figure 1.5: For the original source (a) and the new source (b), derivation of the Green functions G; and Gs. The
Green function (71 is then used to obtain the solution G1 * so for a new source time function ss.

1.2.1 Geological models

Let us define a geological model a as the description of one or more material properties (with g being the number
of properties) at each point of the domain

QCcR! —» RY (1.19)
x —  a(x)

The coarsest level of fidelity is a one-dimensional (1D) geological model that describes a as a function of depth.
It assumes a 1D structure of the Earth with parallel horizontal layers. This type of model can be obtained from
borehole measurements to give accurate but very localized information. The depth is also limited to a few hundred
(rarely thousand) meters (Vergniault and Mari 2020). Alternatively, a 1D model can be obtained as the result of
an optimization problem based on the observation of seismic wave arrivals. Starting from an initial hypothetical
model, one tries to minimize the error between the seismic waves simulated with the hypothetical model and the
observed seismic waves. The CEA LDG provides a 1D model for metropolitan France (Duverger et al. 2021, detailed
in Section 1.4). In the vicinity of the Le Teil earthquake, Causse et al. 2021 obtained a 1D model of Vp and Vs with
this optimization process (Fig. 1.6a).

One main limitation of 1D geological models is their ignorance of horizontal variations in material properties that
can lead to site effects. Site effects refer to the amplification (or deamplification) of ground motion due to geological
or topological characteristics in the vicinity of the site under study. Following this definition, they are considered
as a local effect and should be distinguished from the path effect, i.e. the modification of ground motion due to
the propagation of seismic waves between the source and the surface. Well-known features leading to site effects
are the presence of sedimentary basins where seismic waves get trapped inside the sediments due to their lower
velocity. Other characteristics such as the presence of a hill are also known to create site effects but topography is
not considered in this work.

3D geological models are required to assess the site effects (Makra and Chavez-Garcia 2016; Smerzini et al.
2011) but they are expensive to acquire. When devoting much effort into the modelling of a region of interest,
a local model describes the interfaces between geological layers. It is common to describe at least the interface
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Figure 1.6: Example of (a) a layer cake 1D geological model (Smerzini et al. 2023) adapted from (Causse et al. 2021),
(b) a 3D regional model (Arroucau 2020), (c) a local 3D model with a sedimentary basin, (d) a local 3D model with an
overthrust of thin sedimentary layers (Aminzadeh et al. 1997). Note the different spatial scales between the models

between the sedimentary basin and the bedrock (Fig. 1.6c) and more detailed models describe thinner sedimentary
layers (1.6d). Geological parameters are then inferred in each layer, which is also subject to the extrapolation of
point-wise measurements.

Alternatively, 3D regional models can be obtained on a large scale (several hundreds of kilometers wide and
tens of kilometers deep to represent the Moho, the crust-mantle boundary) from seismic tomography. For instance,
Arroucau 2020 provides a geological model for metropolitan France with a 10km horizontal and 0.5 km vertical
resolution (a small area of this model is shown in Fig. 1.6b). However, this resolution is too coarse to include any site
effect.

All the above-mentioned geological models are subject to uncertainties, related to the depth and shape of the
main structures, and the parameter values in-between (Wellmann and Caumon 2018). Beyond these uncertainties,
it is also crucial to acknowledge that the Earth crust is not a homogeneous material. Indeed, it is made of composite
minerals and fractures of various sizes that induce a deviation of the mechanical properties from their mean values.

1.2.2 Geological heterogeneities

As stated by R.-S. Wu and Aki 1988, “the scale length of heterogeneities revealed by seismic waves, not including
the laboratory measurements of rock samples, spans 8 orders of magnitude”. Thus, before considering the effects
of geological heterogeneities, we firstly need to define the appropriate scales for our problem. We aim at con-
ducting local seismic simulations on areas with a typical length L ~ 10km. The minimum wavelength defined by
equation 1.11 is A ~ 100 m while the largest wavelengths associated with low frequencies extend up to A ~ 50 km.
Geological heterogeneities are parametrized by their correlation length £., which remains to be characterized. The
correlation length reflects the typical size of heterogeneities and indicates the distance above which two spatial
points are assumed uncorrelated.

When heterogeneities are small compared to the wavelength (¢, < ), homogenization can be used to convert
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the heterogeneous medium into an effective smooth medium where the effective wave equation can be solved effi-
ciently (Capdeville and Marigo 2007; Cupillard and Capdeville 2018). In our work, we focus on larger heterogeneities
inducing scattering, i.e. a transfer of the coherent energy in the incoming signal to an incoherent signal, further lead-
ing to a modification of seismic waves. Scattering is responsible for the coda of seismic signals (i.e. the seemingly
random wave train visible after the arrival of the coherent pulses, Fig. 1.1), the envelope broadening (i.e. S waves
having a longer duration when the travel distance is longer), and the differences between ground motion observed
at neighbouring sensors (R.-S. Wu and Aki 1988). Two main scattering regimes exist.

Large-angle scattering is characterized by £. ~ A. In this situation, heterogeneities mainly cause scattering
attenuation, i.e. the wave amplitude globally decreases with increasing distance. Hence, including this type of
heterogeneities in the geological models is important to make the simulations more realistic. When ¢, >~ ), one
can introduce an additional characteristic length, the transport mean free path, that describes the mean distance
between two scatterers. Although it is useful to obtain numerical solutions with the radiative transfer equations,
materials are rarely characterized with the transport mean free path.

In the small-angle scattering regime defined by £, > ), the seismic energy is scattered into the forward direction.
This mainly causes travel time and amplitude fluctuations since waves travelling through a heterogeneity are sub-
ject to a different velocity than the background model. While seismic tomography revealed crustal heterogeneities
between 1 km- and 10 km-wide (Cottereau 2016 and references therein), several studies used 3D numerical simu-
lations to reproduce seismic recordings by altering the reference geological models with random heterogeneities.
The following studies were conducted on scales similar to ours and therefore, serve as a reference to define the
correlation lengths in our work.

In the San Francisco bay area, correlation lengths of 4 km were found by Thompson et al. 2007 in the first 10 m
of the basin and Hartzell et al. 2010 confirmed correlations between 5km and 10km. In southern Nevada, Scalise
et al. 2021 experimented horizontal correlation lengths between 0.6 km and 2.4 km and vertical correlation lengths
from 0.15km to 0.6 km. Finally, based on generic geological models, Imperatori and Mai 2013 found that correla-
tion lengths between few hundreds meters and few kilometers produce good agreement between simulations and
recordings.

Random fields

Random fields are a convenient approach to model geological heterogeneities since they cannot be located at a
precise location in the domain. A random field A can be thought of as a stochastic process defined on a probabilistic
space and the physical domain  C R?. For a given realization 7 in the probabilistic space, A, is a deterministic
function defining the value of the random field at any point, A,(x). Alternatively, when fixing the spatial point
x € ), A(x) is a random variable describing the material properties. Under some conditions on the individual
random components of the elasticity tensor, the random field describing the material is a second-order random
field (Soize 2008). Log-normal random fields are conveniently used to preserve the positivity of material properties
by assuming that any finite-dimensional variable {log(A)(x1), - - ,log(A)(x,)} is a multivariate Gaussian random
variable. Gaussian random fields are characterized by their mean m () and covariance Cov(x, ') functions

m(x) = E[A(z)]
Cov(z,z') :=E [(A(z) — m(z)) (A(z') — m(z'))]

The mean function is obtained from the reference geological model. The covariance function is conveniently
defined from a correlation model R that assumes some relationships between the material properties at different
points. In particular, the stationarity and isotropy assumption allows to write the correlation model as a function
of distance r = ||& — «'|| instead of the exact location of points & and «’. The covariance function is related to
the correlation model through the standard deviation of A(x), assumed to be constant for all € 2, and hence
denoted o

(1.20)

Cov(z,z') = c*R(||x — z'||) (1.21)

It is commonly accepted that geological parameters can be appropriately defined with a von Karman correlation
model (e.g. Hartzell et al. 2010 and references therein). The von Karman correlation model reads

where v is the Hurst exponent characterizing the roughness of the material (v is fixed to 0.1 in this work), I is the
Gamma function, and K, is a second-order Bessel function. One can note that the correlation length can be made
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anisotropic by defining correlation lengths £, £,, £, along each direction and scaling r independently along each

axis
lz—a'|  [(z=2'\" (y=y\° (22
7 = A + Ey + 7. (1.23)

To compute efficiently the random fields, the spectral representation technique (Shinozuka and Deodatis 1991;
de Carvalho Paludo et al. 2019) is adopted within the SEM3D framework. With this formulation, a centered Gaussian
random field A can be decomposed as a sum of independent identically distributed random variables (¢, ) - N<n< N,
with uniform distribution over [0, 27]

N
Alx) = Z IR (nAk) cos(nAk - x + ¢,)
n=—N

where R is the Fourier transform of the correlation kernel R and Ak the unit volume in R3. Figure 1.7 illustrates
two heterogeneous geological models obtained with this method, different correlation lengths and coefficients of
variation.

(@) by = £, = 6km, £, = 3km, o = 40% (b) £y = £, = £, = 1.5km, o = 20%
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Figure 1.7: (a) Geology with large-scale heterogeneities: correlation lengths of 6 km in directions z and y, 3km in
direction z, coefficient of variation of 40%. (b) Geology with small-scale heterogeneities: correlation lengths of
1.5km in directions x, y and z, coefficient of variation of 20 %.

With these definitions, we are left with the choice of the coefficient of variation . The above-mentioned works
(Hartzell et al. 2010; Imperatori and Mai 2013; Scalise et al. 2021) use coefficients of variation between 5% and
13 %. However, in local studies focusing on borehole measurements, coefficients of variation as large as 40 % have
been found (El Haber et al. 2019; Chaljub et al. 2021). Although those values are associated with smaller correlation
lengths, it indicates that it is worth exploring large coefficients of variation.

1.3 Evaluation metrics

It is often required to compare ground motion time series, either between numerical simulations and recorded
seismograms, or between numerical simulations and the predictions of a surrogate model. The comparison should
account for the three components of ground motion, the temporal evolution, as well as all spatial points where
ground motion is available. No single metric can provide an exhaustive measure of the agreements between two
sets of time series and we need to evaluate several metrics to get a proper understanding of the agreement between
the time series.
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Let us consider a reference velocity time series v(x, t) and an approximation v(x, t), both depending on space
x and time ¢t. Their numerical representation is given at IV, spatial points x1,--- , N, and N; time instants
t1,--+,tn,. Our typical variable of interest is the ground motion velocity but the metrics can be defined for other
variables. In the usual framework, the space is three-dimensional (d = 3), which means that ground motion has
three components (ug, uy, vz, see Fig. 1.1).

1.3.1 Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)

The Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) are common metrics to compare data in
machine learning. They are often used in their relative formulation

|v(x,t) —v(x,t)|1
rMAE(x 1.24
Ntz |lv(x,t)]|1+¢€ (.24

|o(x,t) —v(x t)”2
MSE(x) = 1.25
rRMSE(x) Ntz lo@. DR &2 (1.25)

where ¢ (typically £=0.01 m/s in this work) prevents numerical artefacts due to small values.

1.3.2 Frequency biases

The MAE and RMSE are point-wise metrics that do not give information on the accuracy of the approximated physical
phenomena. We propose to use frequency biases to represent the agreement between the Fourier coefficients of
the approximation ¥ and the ground truth v. To do so, we compute the mean of Fourier coefficients on several
frequency intervals: low frequency (0-1Hz), medium frequency (1-2Hz), and high frequency (2-5Hz)

Fo@ow =5~ 3 @) (126

Fo<r<a

In equation (1.26), Ny denotes the number of frequencies f between 0 and 1Hz and F(v(x))(f) is the Fourier
coefficient of the time series v(x) at frequency f. Definitions naturally extend to medium and high frequencies.
Frequency biases are then defined by

F0(2))10 — F(0())

slow = low (1.27)
F(v(z))

rEFTg(x) =

low

It should be noted that positive frequency biases indicate an overestimation of the frequency content compared to
the reference (F (v(x)) > F (v(x))) while negative values indicate an underestimation. Noting that the mean of
Fourier coefficients amplitudes F (v(x)) is always positive, this implies that the frequency biases cannot be lower
than —1. Also, the frequency biases are computed individually for each of the three components of ground motion
and then, averaged.

Alternatively, Anderson 2004 defines the frequency bias as the logarithm ratio

n (M) (1,28

low

The two definitions are not very different when the error between the prediction and the ground truth is small, which

is our main focus of interest. Indeed, writing F(v(x));,,, = (1+a)F (v(x)),,,, our definition of the frequency bias
(equation 1.27) becomes a while the logarithm ratio (equation 1.28) becomes In(1 + «). When « is relatively small
(typically || < 0.5), both values are close.
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1.3.3 Goodness-Of-Fit (GOF)

In seismology, time series are often compared in terms of time-frequency envelope and phase misfits Kristekova et
al. 2009. The time-frequency representation W of the signal v is computed from the continuous wavelet transform

Wa(t, f) = ,/27;50'/00 (@, )" <27rf7—<;)t> dr (1.29)

Misfits are evaluated on the envelope of the signals |W (¢, f)| and on the phase Arg(Wy(t, f)). They can be sum-
marized by two scalar values: the envelope Goodness-Of-Fit (GOF) and the phase GOF. The envelope GOF expresses
the error of the predicted amplitude compared to the reference time series while the phase GOF describes the error
of the phase arrivals. GOFs are given on a scale between 0 and 10 where 10 means a perfect agreement and the
following score assessment is well accepted: 0-4 is a poor score, 4-6 is fair, 6-8 is good, 8-10 is excellent (Kristekova
et al. 2009). Figure 1.8 illustrates the time-frequency GOF between a reference simulation and a surrogate model
prediction. Lower GOF values are found at the time instants where signals are the most different.

frequency
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Figure 1.8: lllustration of the time-frequency representation and GOF values. In the central panel, the black line is
the reference simulated ground motion and the red line is the ground motion predicted by our surrogate model
(same configuration as Fig. 3.8 but for a different sensor). At the top, the envelope GOF is shown with respect to
time and frequency. On the bottom, the phase GOF is shown. The final GOF scores are the envelope GOF (EG) and
phase GOF (PG).

Olsen and Mayhew 2010 states that GOFs are well adapted for low-frequency comparisons, which is the frame-
work of this work since the maximum frequency solved in the simulations is 5Hz. Also, one should note that the
GOFs are computed simultaneously on the three components and the normalization accounts for the three compo-
nents.

1.3.4 Intensity measures

Several intensity measures are used in seismology to evaluate specific features of ground motion. They are often
related with structural response.
The Peak Ground Velocity (PGV) is computed as the maximum absolute value of the velocity time series

PGV (v)(x) = max lv(x, t)] (1.30)
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Similarly, the Peak Ground Displacement and Peak Ground Acceleration correspond to the maximum of the dis-
placement and acceleration time series. The PGV can be computed component-wise, on the norm of the three
components or more specifically, on the geometrical mean of the two horizontal components.

The Relative Significant Duration (RSD) indicates the duration of ground motion. It corresponds to the duration
of the signal between 5% and 95% of the Arias intensity (I 4) (Arias 1970)

T

T a2(yat (1.31)

L= —
29 Jo

where a(t) is the acceleration field and 7' is the total duration of the signal.
The Cumulative Absolute Velocity (CAV) is often computed to provide a proxy of the velocity field's energy content
since it is found to be related to structural damage (M.-H. Wu et al. 2022)

T
CAV = / la(t)|dt (1.32)
0

1.3.5 Pseudo-Spectral Acceleration (PSA)

The Pseudo-Spectral Acceleration (PSA) is the most commonly used metric to estimate structural response. If a
structure is approximated by a linear oscillator with a given natural period 7y and a damping level (usually 5%
damping), one can compute the displacement d,s. and acceleration a,s. of the oscillator when the structure is
subject to ground acceleration a(t). Then, the spectral displacement is SD(Ty) = max; |dosc(t)| and the spectral
acceleration is SA(Tp) = maxy |aosc(t)|. Despite being close to the spectral acceleration, the “true mesure” (J. W.
Baker and Cornell 2006) of the structural response is the pseudo-spectral acceleration (PSA), defined as

2
PSA(Ty) = <2T7;> SD(Ty) (1.33)

1.4 Simulations of the Le Teil earthquake (France, 2019)

This section presents the work done in 2021-2022 to simulate the Le Teil earthquake with SEM3D and the data
available at this time. In particular, this study was conducted before the publication of Smerzini et al. 2023 and
El Haber et al. 2021 within the framework of the SIGMA-2 project. They investigated several simulation methods to
reproduce the recordings of the Le Teil earthquake, including large-scale 3D physics-based simulations. We do not
aim at comparing our results with theirs (geological models and source parameters are different) but instead, we
intend to show the limitations of regional models and how random heterogeneities can complement these models.
This work was published in F. Lehmann et al. 2022 and is mostly reproduced below.

1.4.1 Context of the work

The Rhone valley was hit by a Mw4.9 earthquake on November, 11", 2019 known as the Le Teil earthquake. The
Le Teil earthquake is the most damaging earthquake of the last decade in metropolitan France. While the seismic
source can be constrained by INSAR data (De Novellis et al. 2020; Vallage et al. 2021), determining local geological
models is more challenging. In this region with a low instrumental seismicity (Larroque et al. 2021), poor geological
measurements are available at present. Although geophysical campaigns were conducted after the earthquake,
data remain too sparse to design a geological model at the scale of interest (Marconato et al. 2022). Therefore, the
most specific geological model is the 3D regional geological model (P- and S-waves) recently elaborated within the
framework of the SIGMA-2 international project (Arroucau 2020). Thus, in the absence of a validated local model, it
is legitimate to explore the abilities of regional-scale models in regional numerical simulations.

However, due to its insufficient resolution, this 3D geological model shows only gentle horizontal variations
representing the main geological patterns of the region (i.e. a 50km x 115km domain across the Rhdéne Valley
characterized by a crystalline basement with higher velocities in the Massif Central in the Northwest and sediments
in the plain (Ritz et al. 2020)). The 3D model especially lacks the description of the sedimentary basin extending
along the Rhdne valley (Bravard and Gaydou 2015). This prevents the possibility to constrain numerical simulations
in a broad-band spectrum (0-10 Hz at least). One possible remedy consists in modelling the sedimentary basin from
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a Digital Elevation Model. Then, velocity fields can be inferred from 1D velocity profiles acquired by seismic inversion
inside and outside the basin, as done by Smerzini et al. 2023; El Haber et al. 2021. This method has already been
adopted in other low-to-moderate seismicity regions such as the Grenoble region (Chaljub 2006; Stupazzini et al.
20009).

Another modelling challenge is introduced by small-scale heterogeneity, which plays a crucial role in seismic wave
propagation, especially at high-frequency (Vyas et al. 2018; Scalise et al. 2021). Heterogeneity is rarely included in
numerical simulations due to the increased computational demand. It can be represented by random fields that
add small scale fluctuations to the geophysical models (Gatti et al. 2017; Svay et al. 2017).

1.4.2 Data
Source models

The Le Teil earthquake occurred on the La Rouviére fault, a fault which was not considered as active despite being
part of the larger Cevennes fault system which was potentially active (Ritz et al. 2020). Remarkably, this shallow
earthquake (1.3 km depth £ 0.5 km) induced a surface rupture. Figure 1.9 shows the map of the region of interest,
including the available recording stations and the trace of the La Rouviére fault.
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Figure 1.9: Map of the region affected by the 2019 Le Teil earth- » sleng strike s

quake, in South-Eastern France. The computational domain is in-
dicated with the dotted box. Velocimeters and accelerometers are Figure 1.10: Final slip given by the kinematic
shown with black triangles (details in Tab. A.1). fault model (Vallage et al. 2021).

The Le Teil earthquake was recorded by 22 stations within 70 km from the fault (Table A.1). Some velocimeters
(e.g. PAUL and BOLL in Figure 1.9) saturated while recording and they could not be considered for further analyses.
This study focuses on the stations OGDF, OGCB, CRU1 located out of the sedimentary basin since its absence from
our geological models is likely to impact synthetic ground motions inside the basin.

The hypocenter was obtained from the results of the waveform inversion (44.5188°N, 4.6694°E, depth -1.3km,
Delouis et al. 2021). In this study, two types of seismic sources were compared, with a target seismic moment
My = 2.47 x 10"® N m. Namely, a double-couple point source was assumed with strike = 48°, dip = 45°, and
rake = 88° (Delouis et al. 2021). Its temporal evolution is a spice bench

t

t
t+—>1(1+) e, (1.34)
T

28



with 7 = 100-5(Mw—6.69) = 9 127 s (Dreger et al. 2007; Gatti 2017). In addition, a kinematic fault model was designed
from the inversion of INSAR satellite observations performed by Vallage et al. 2021 (Fig. 1.10). The fault model was
computed following the Ruiz's Integral Kinematic (RIK) numerical scheme (Ruiz et al. 2011) implemented by Gallovic
2016. The fault was represented as a 7 km-long and 4 km-deep plane with a 60° dip and reaching the surface at its
highest point. It was further discretized in triangular patches. A bidirectional rupture front starts from the nucleation
point located at the hypocenter. Each patch activates when it is reached by the rupture front, under the constraint
that its final slip corresponds to the one obtained from the InSAR inversion.

Geological models

In the absence of a local model, two geological models for metropolitan France were adopted in this study and com-
pared. The first one is a 1D model used by the Geophysical and Detection Laboratory (LDG) of the French Alternative
Energies and Atomic Energy Commission (CEA) to locate seismic events (Table 1.2, Figure 1.11a and Duverger et al.
2021). It was obtained using the Pg, Sg, Pn, and Sn phases of a series of 50+ well identified earthquakes (Veinante-
Delhaye and Santoire 1980). It presents a thin sedimentary subsurface layer with low velocity (Vs = 1730 m/s),

overlying a 25 km thick crustal layer (Vs = 3560 m/s). The average ratio between P- and S- wave velocities is 1.69.
The bedrock is described by S-wave velocities of 4650 m/s.

layer | thickness (m) | Vp (m/s) | Vs (m/s) | p (kg/m3) Qp Qs
1 900 3000 1730 2700 200 61
2 25,000 6030 3560 2700 300 | 128
3 15,000 8160 4650 3300 1000 | 500

Table 1.2: 1D geological model used by the CEA-LDG to locate seismic events. Described in more details in (Duverger
et al. 2021).
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Figure 1.11: Geological models used in the simulations

Alternatively, Arroucau 2020 proposed in the framework of the SIGMA2 project a 3D geological model for S-
and P-waves in metropolitan France. This model includes topography/bathymetry and was built as an improved
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and homogeneized version of partial previous models (mainly EPcrust (Molinari and Morelli 2011), combined with
ambient noise and teleseismic surface wave tomography models, a CSS-derived model, and a local earthquake
tomography study, see references in Arroucau 2020). This model has a 10km x 10km x 0.5km resolution and
shows horizontal variability even at the regional scale of interest. Figure 1.11b for example shows higher surface
velocities in the North-Western mountainous part of the region compared to the plains in the South-East. The
thickness of the Earth crust is between 26 km and 31 km in the region of interest, consistently with geophysical
knowledge (Larroque et al. 2021). This model also leads to a mean Vp /Vg ratio of 1.72 (between 1.68 and 1.8),
which is slightly lower than the 1.9 ratio recommended by Delouis et al. 2021 to recover S-waveforms of the Le Teil
earthquake.

Heterogeneous geological models

Random fields were added to the 1D geological model to create small scale heterogeneities. They were drawn
independently in each of the three layers, thus possibly creating sharp interfaces between layers. Following previous
works described in Section 1.2, we adopted correlation lengths of 10 km in the horizontal direction and 1 km in the
vertical direction, associated with a 10 % coefficient of variation. This parametrization is coherent with the results
obtained for the Le Teil earthquake via a Monte-Carlo approach of particles diffusion in a heterogeneous Earth crust
(Heller 2021). Thanks to the spectral representation (Equation 1.2.2), random fields were generated in a few seconds
for the whole domain with a 2km x 2km x 0.2 km resolution. They were later interpolated on the Gauss-Lobato-
Legendre (GLL) points as part of the computation process.

Simulation framework

The 50km X 115km x 38km computational domain was discretized on a hexahedral mesh with 6.7 million ele-
ments. With a minimum S-wave velocity of 1730 m/s (in the 1D geological model) and 5 GLL points per element,
this mesh allowed wave propagation up to 5Hz. Simulations were run on 2048 cores AMD Milan @2.45GHz (AVX2)
operated by the Trés Grand Centre de Calcul (TGCC, France). Thanks to this computational power, simulations were
obtained in 5800 h CPUs for 60's of simulated signal.

Figure 1.12 summarizes the configurations investigated in this study, with different combinations of sources and
geological models. When running the simulations with the heterogeneous models, we focus on the point-source
description to limit the interactions between the source and the medium which may alter the results independently
from path effects.

1.4.3 Comparison of simulations with records

Numerical results were compared with seismograms records in several stations to evaluate the parameters choices.
First, the point-source was used in conjunction with the 1D geological model. Figures 1.13 and A.1 show that despite
the simplicity of the models, the level of agreement is surprisingly good. Indeed, the frequency response spectra
show a correct corner frequency around 0.8 Hz, as well as similar slopes and amplitudes.

In addition, the wave arrival times are well reproduced by the simulation, proving that the mean velocity on the
source-to-site path is correctly modelled (Fig. 1.14). The very first oscillations are also coherent with the records,
especially in station OGDF (Fig. 1.14a).

However, one can notice in Figures 1.14a and 1.14b that the numerical simulation produces late oscillations
with higher amplitudes than the recorded ones. They can be seen from 27s in station OGDF and from 365 in
station OGCB. These oscillations may come from the thin upper layer with a high velocity contrast defined in the
1D geological model that creates a wave guide. In fact, when the 3D geological model is used instead of the 1D
geological model, those late oscillations are no more present, as can be seen in Figures A.2a and A.2b.

Yet, the use of the 3D geological model leads to other issues. Figures A.2a and A.2b indeed show high velocity
peaks at the beginning of the signal. The peaks's amplitude is higher than the maximal velocities recorded during
the earthquake. As an example, the horizontal Peak Ground Velocity (PGV) was 5 times higher than records in
station OGDF and 7 times higher in station OGCB. The velocity peaks indicate that the energy content of the signal
is concentrated in the first wave arrivals. This results from the smoothness of the 3D geological model: the absence
of inter-layer discontinuity prevents the multiple wave refractions and reflections that tend to spread the energy
distribution over time.

To better represent the time duration of the signal, the point-source was replaced by an extended fault model
and used in conjonction with the 3D model. Figures 1.15 and A.3 show a satisfactory agreement between the
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Figure 1.12: The simulation workflow involves a 3D geological model and a 1D geological model that was perturbed
by three random field samplings. Inside each model, seismic waves from a point source were simulated. Ground
motion generated by the kinematic fault model was also computed in both homogeneous models.

recorded and synthetic frequency response spectra in this setting. As expected, the successive nucleation of points
on the fault plane creates an energy distribution that avoids the large peaks observed with the point source (Fig-
ure A.4). The horizontal PGV was hence reduced to 1.15 and 5 times the recorded one in stations OGDF and OGCB
respectively.

1.4.4 Effects of geological heterogeneities on simulated ground motion

Figure 1.16 shows that introducing heterogeneities reduces the early peaks’ amplitude compared to the signals gen-
erated with the homogeneous 1D geological model. Heterogeneities also limit the duration and scale of the surface
wave oscillations. This behaviour is interpreted as a consequence of the diffraction induced by heterogeneities that
spread the energy content and limit the wave guide effect. Therefore, the signal obtained with a heterogeneous
medium seems more realistic than those originating from the homogeneous model.

However, one cannot claim that one sampling of a random field can represent the variability of all possible
heterogeneities. To assess the possible impacts of heterogeneities while maintaining reasonable computational
costs, two other different random fields were drawn and added to the 1D geological model. Figures A.5a and A.5b
show the ground motion response in station OGDF with those random fields. One can notice that those samplings
tend to increase the amplitude of the late oscillations compared to those obtained with the homogeneous medium.
Therefore, the influence of random fields on the surface wave oscillations was not consistent between samplings.

Given the large variability in ground motion responses arising from the three random fields samplings, it is cru-
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Figure 1.13: Frequency response spectra of the numerical simulation (in red) obtained with the 1D geological model
and a point source. Comparison with seismograms records (in black). Velocities are given in the East-West (E-W),
North-South (N-S), and vertical (Z) directions for the station OGCB. R denotes the epicentral distance.
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Figure 1.14: Results of the numerical simulation (in red) obtained with the 1D geological model and a point source.
Comparison with seismograms records (in black) filtered at 5 Hz. Velocities are given in the East-West (E-W), North-
South (N-S), and vertical (Z) directions for stations OGDF (a) and OGCB (b)
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Figure 1.15: Frequency response spectra of the numerical simulation (in red) obtained with the 3D geological model
and a kinematic fault model. Comparison with seismograms records (in black). Velocities are given in the East-West
(E-W), North-South (N-S), and vertical (Z) directions for the station OGCB.

cial to ensure that those responses remain physically plausible. This was done by computing the mean horizontal
Pseudo Spectral Acceleration (PSA) in three stations for the 1D geological model and the three heterogeneous mod-
els. Then, we compared the synthetic PSA with the one given by a regional Ground Motion Prediction Equation
(GMPE, Berge-Thierry et al. 2003). Figure 1.17 shows that the synthetic PSAs were within the confidence bounds
of the GMPE, thereby ensuring that our heterogeneous models were realistic. More precisely, the first and second
random field samplings were close to the GMPE. The third sampling led to PSA slightly higher than the upper bound
of the GMPE for stations CRU1 and OGDF. However, it is noteworthy that the record in station OGCB was also out of
the confidence interval. Therefore, we had no reason to reject the third sampling based on the sole analysis of the
PSA.

Moreover, Figure 1.17 shows that both the homogeneous 1D geology and the second sampling of the heteroge-
neous geology were close to the records. Although comparing the PSA did not lead to a preference for one of these
two models, we showed above that the heterogeneous model was able to reduce the surface wave oscillations.

1.4.5 Partial conclusion

Considering the sparsity of available geological data in the Le Teil region, a 1D layered geological model was not rich
enough to accurately simulate the Le Teil earthquake. Geological models can be improved by the addition of random
fields that however yield a large ground motion variability. We showed that the main ground motion characteristics
of the Le Teil earthquake can be reproduced using regional geological models. The frequency response spectra were
in satisfactory agreement with the recorded seismograms. However, the 1D geological model, with its peculiar sub-
surface layer, induced surface waves with high-amplitude oscillations. These oscillations were significantly reduced
when adding random fields to the geological model, therefore leading to more realistic signals.

With the 3D geological model, surface wave oscillations disappeared. However, this model needed to be used
in conjunction with the kinematic fault model to ensure that the signal energy was correctly spread over time.
Otherwise, the point source model led to peak ground velocities much larger than the recorded ones. We also
found some differences between ground motion generated from a point source and from an extended kinematic
fault model. We interpret these differences as plausibly coming from the low depth of the Le Teil fault.

Although the addition of random fields on the 1D geological model could reduce the unrealistic surface waves
oscillations, this effect was not necessarily consistent between stations and between different random fields sam-
plings. Therefore, a larger diversity of random fields is necessary to better understand the impacts of hetero-
geneities on ground motion.

1.5 Conclusion
We have presented the elastic wave equation that models the propagation of seismic waves in the Earth’s crust. This

equation is solved numerically with the Spectral Element code SEM3D that provides an efficient High-Performance
Computing (HPC) framework. Simulations are parametrized by a 3D geological model that often relies on random
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Figure 1.17: Pseudo Spectral Acceleration (PSA) at 1s
Figure 1.16: Numerical results in station OGDF obtained in 3 stations (CRU1, OGDF, OGCB). Mean horizontal
with a point source and the 1D geological model en- PSA for records (pink cross), 1D model (black dots),
hanced with random fields (blue). Comparison with the 1D model with random fields (colored dots), and a
results of the homogeneous 1D geological model (grey) GMPE (grey line) with the associated confidence inter-
and the records filtered at 5 Hz (black). val (Berge-Thierry et al. 2003).

fields to represent geological heterogeneities and account for our lack of geophysical knowledge in the region of
interest. Although the seismic source can be defined as an extended fault plane, it is often approximated by the
equivalent point-wise source with the moment tensor description.

Simulations of the Le Teil earthquake highlighted that numerical simulations can reproduce recorded seismo-
grams, provided that geological models and source parameters are accurate enough. However, quantitative anal-
yses of the variability induced by heterogeneous models would require hundreds of thousands of simulations in a
typical Monte Carlo framework, which is computationally intractable. Based on the sensitivity analysis performed in
Chapter 4, let us assume Nj;c = 10° Monte-Carlo evaluations of ground motion with different geological models.
Knowing that one SEM3D simulation in the whole domain lasts for 5800 h CPUs, this would amount to an energy
consumption of 2.8 GWh (Tab. 1.3).

Task Number of realizations | Energy consumption (MWh)
SEM3D simulations 50km x 115km x 38km, Ty=60's Nye = 10° 2800

Table 1.3: Estimation of the energy consumption that would be necessary for uncertainty quantification analyses
with large-scale SEM3D simulations. The energy consumption of 1 CPU is estimated to 4.88 Wh.

This study illustrates the need for a surrogate model able to predict the ground motion generated by a realistic
earthquake source when seismic waves propagate through a complex 3D geological medium. The surrogate model
should be fast enough to allow repeated runs while preserving a good accuracy.
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Chapter 2

First attempts to build a reduced-order
model

In the perspective of seismic hazard analyses, we focus on the forward problem of wave propagation and we inves-
tigate the design of a surrogate model to replace SEM3D physics-based simulations. The surrogate should offer a
flexibility similar to simulations by

1. taking as input a 3D geological model that enables a detailed description of the Earth’s crust properties, and

especially geological heterogeneities

2. considering different earthquake source properties

3. predicting ground motion time series for each spatial location
The surrogate model should be accurate enough so that predicted ground motion is reliable and physically consis-
tent, and it should be significantly faster than the physics-based simulations.

Machine learning provides several well-used surrogate models, such as Gaussian processes, polynomial chaos
expansions, and projection-based reduced-order models. Despite many developments and several applications
in seismology, none of these surrogate models offers a framework that meets all our requirements (Section 2.1).
Surrogate models that depend on a 3D heterogeneous geology are especially rare, although we showed in Chapter 1
that the influence of geological heterogeneities on ground motion should be accurately quantified.

To fill in this gap, we design a database of 30000 heterogeneous geological models and compute the ground
motion generated by an earthquake source in each geology (Section 2.2). Existing databases in the literature either
compile recorded ground motion (e.g. STanford EArthquake Dataset (Mousavi et al. 2019), MLAAPDE dataset (Cole et
al. 2023)), in which case information on the geological properties between the earthquake source and the recording
sensor are almost nonexistent, or provide synthetic 3D geological models (e.g. Noddyverse dataset Jessell et al.
2022) with no associated ground motion. We provide the first database of physics-based earthquake simulations
in complex 3D domains with enough samples to allow machine learning applications. Our HEMEW-3D database is
publicly available (https://doi.org/10.57745/LAI6YU) and its analysis is under review in F. Lehmann et al. (2024a).
“Synthetic Ground Motions in Heterogeneous Geologies: The HEMEW-3D Dataset for Scientific Machine Learning”.
In: Earth System Science Data Discussions 2024, pp. 1-26. DOI: 10.5194/essd-2023-470.

Due to their dependence on three spatial coordinates, our geological models are described by a large number of
variables. In many surrogate models, one aims at reducing the dimension of variables to capture only the meaning-
ful relationships in a latent space of smaller dimension than the initial data space. To this end, we compare a linear
(Principal Component Analysis, PCA) and a non-linear (UNet auto-encoder) dimensionality reduction method (Sec-
tion 2.3). After evaluating the quality of the reduced geological dimension, we show its influence on ground motion
and highlight several shortcomings of this approach. This work was published as the second part of F. Lehmann
et al. (2022). “Machine Learning Opportunities to Conduct High-Fidelity Earthquake Simulations in Multi-Scale Het-
erogeneous Geology”. In: Frontiers in Earth Science 10. ISSN: 2296-6463. DOI: 10.3389/feart.2022.1029160.

2.1 Machine learning-based surrogate models

In the following sections, we highlight some commonly used surrogate models like Gaussian processes, polynomial
chaos expansion and projection-based reduced order models. While acknowledging the numerous theoretical ad-
vancements that extend those methods beyond the reference framework presented here, we focus on studies that
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have direct applications in the prediction of ground motion. Several of these works also inspired further develop-
ments of our surrogate model and their significance should not be understated.

2.1.1 Gaussian processes

A Gaussian Process (GP) is “a collection of random variables (Yx)xex, any finite number of which have a Gaussian
distribution” (Rasmussen and Williams 2006). The index set X is the set of possible inputs, for instance X C R may
represent the spatial coordinates of the Gaussian process. As examples, one can think of Y as describing geological
properties or ground motion displacement as a function of space. A Gaussian Process is entirely characterized by
its mean function m and covariance function k

m(x) = E[Yy] @.1)
k(x,x") = E [(Yx — m(x)) (Yo — m(x))] (2.2)

One suitable property of Gaussian processes lies in the ease of obtaining new data from a set of training data.
More precisely, let us assume zero mean, a given expression of the covariance function (e.g. the squared exponential
covariance function k(x, x') = o2 exp (—5;[|x — x[|?)) and a set of training data of the form (x;, Yx;)1<i<n. Train-
ing data may come from (assumed noise-free) observations and can be written in the short form x1.,, 1= (X1, -+ ,Xy),
Yi., = (Yxl, -+, Y%, ). Then, for a new observation point x, € &, it is well-known that the output Y, can be
computed from the joint prior distribution conditioned on the observations (Rasmussen and Williams 2006, eq.

2.19)
}/*‘X*, X1:in, Yig, ~ N (I{Z(X*, Xl:n)k(xlzna Xl:n)_lylsna

(2.3)

k(X*, X*) - IC(X*, Xl:n)k(xlzn, Xl:n)ilk(xlzn; X*))
One major difficulty is to define a suitable covariance function and adjust its hyperparameters (o and £ in the
example of the squared covariance function) to match the training data.

lllustrative examples of Gaussian processes in our seismological objective can be divided in two broad classes.
In the first class, the geological model is prescribed and one aims at finding an interpolator of ground motion dis-
placement between a set of observation points. When considering the 3D homogeneous acoustic wave equation,
Henderson et al. 2023 showed that it is possible to build a Gaussian process that approximates the numerical solu-
tion from a small number of observations (30 sensors inside a cubic domain). However, the geological parameter
is constant and fixed, meaning that the obtained Gaussian process is specific to a given geological model. A similar
application was conducted by Tamhidi et al. 2022 from numerical simulations of the 1906 My, 7.9 San Francisco
earthquake. They were able to estimate the acceleration time series at any point from a set of synthetic seismo-
grams but, once again, the geological model used in the simulation is fixed. In this setting, Gaussian Processes are
similar to Physics-Informed Neural Networks (PINNs, Chapter 3) in the sense that they output (an approximation of)
the solution of the wave equation in a given geological model.

In the second class of Gaussian processes applications, one considers varying geological configurations and
one wants to estimate some ground motion features corresponding to each configuration. In this context, ground
motion is not predicted as an entire time series but with some scalar features such as the spectral acceleration
at a given period (corresponding to the random variable Y). And the input x is a set of parameters related to
the earthquake (e.g. magnitude, epicentral distance) and the ground characteristics at the location of interest (e.g.
Vs 30). This is the typical framework of ground motion models where ground motion and inputs can be modelled
with Gaussian processes (Alimoradi and Beck 2015; Lacour 2023). However, this framework does not satisfy our
requirement that the surrogate model should provide ground motion time series.

2.1.2 Polynomial chaos expansion

Polynomial chaos expansion (PCE) is another well-used surrogate model, especially thanks to its strong relationship
with sensitivity analysis (Sudret 2008). This method relies on the decomposition of a random variable Y as a sum of
orthogonal polynomials ¢ (Wiener 1938; Ghanem and Spanos 1991)

Y(€) =) arr(é) (2.4)

keNP
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Inputs are random variables &1, - - -, , that parametrize, for instance, the earthquake source or the geological
model. After deciding the form of the polynomial basis functions ¢ and determining the coefficients ay, from a
training database, the surrogate model can infer outputs corresponding to any new values of the random inputs.

Cruz-Jiménez et al. 2018 studied the influence of the fault plane on the Peak Ground Velocity (PGV) thanks to
8000 simulations of fault rupture. Each rupture is parametrized by 7 random variables and a 9-th order PCE models
the PGV at a given station. To study the spatial variability of ground motion, one new surrogate model is built for
each station, which increases the required computation. To benefit from the spatial correlation in ground motion,
Sochala et al. 2020 applied the PCE to the dominant spatial modes of the Peak Ground Displacement (PGD). Their
model also differs by considering parameters of the geological model as input random variables instead of the
source parameters. For a given region near Thessaloniki (Greece), the 3D geological model was parametrized by 7
random variables that describe the interfaces between layers and the velocity values per layer.

The first two studies predict the maximum displacement, which does not give information on the ground motion
dynamics. To obtain ground motion time series, F. Wang and Sett 2016 rely on an intrusive approach that intricates
the PCE inside the numerical solver of the wave equation. By doing so, both the source time function and the
geological model can be parametrized by random variables. This method was extended to a 3D domain in F. Wang
and Sett 2019. However, there are numerous situations where the numerical solver cannot be accessed by the
end-user, or even there exists no such solver. Non-intrusive approaches are therefore the only approach in those
situations.

2.1.3 Reduced-order models

The above mentioned works parametrize the inputs with a small number of random variables that correspond to
tangible physical parameters. However, when acquiring geological models from observations for instance, inputs
are high-dimensional images and there exists no close-form relationship to express the geological model as a func-
tion of parameters. In this case, one generally assumes that there exists a representation of the physical processes
in a lower-dimensional subspace and one looks for a reduced representation. Proper Orthogonal Decomposition,
Principal Component Analysis (PCA), Empirical Orthogonal Functions, and Karhunen-Loeve expansion are all differ-
ent terms to define the decomposition of a function as a sum of components which correspond to a projection
on a reduced basis. As an illustrative example, let us consider the ground motion displacement u generated by
parameters 6 as a function of space x and time . It can be decomposed as

w(@,t;0) = vp(t; 0)pm(x;0) (2.5)

m=1

where the space and time dependencies are split between two sets of basis functions, respectively temporal eigen-
modes vy, (t) and spatial eigenmodes ¢,,(x). Eigenfunctions are classically obtained by computing the eigenvec-
tors of the empirical covariance matrix. However, this matrix becomes very large when the number of snapshots
(u(z;, t5))s,j is large, which can make the computation intractable.

Ignoring the spatial dependency, a reduced basis can be obtained from a collection of seismograms and further
used to fit a Ground Motion Model (Alimoradi 2011; Hu et al. 2023). However, the generalizability of this approach
is strongly dependent on the region where seismograms were recorded. To account for different earthquake sce-
narios, Imai et al. 2021 expressed earthquake shaking maps (spatial description of PGV) as the PCA of space- and
scenario-dependent functions. The reduced-order model was built from a database of 12 scenarios and new sce-
narios were generated while preserving the probability distribution of the scenario eigenmodes. A similar approach
was followed by Rekoske et al. 2023 who predicted PGV maps for a region in south California. The input parameters
0 correspond to the description of the earthquake source (depth, strike, dip, and rake) and the spatial eigenmodes
account for the spatial correlation of ground motion. The training database was obtained from 5000 3D earthquake
simulations with a reference Californian geological model. However, the POD formulation in Equation 2.5 highlights
one challenge of this method since the basis functions v,, and ¢,, have been obtained only for a set of parameters
0 that belong to the training database. If one wants to approximate u(x, t; 8*) for a new 6*, more advanced meth-
ods like Empirical Interpolation Methods need to be employed (a summary can be found in Ghattas and Willcox
2021). Rekoske et al. 2023 resolved this issue by an explicit parametrization of the source eigenmodes with radial
basis functions which allows them to predict the PGV for new source parameters that do not belong to the training
database. However, the surrogate model cannot be applied with a different geological model than the one used in
the training database.
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Similarly to the intrusive approach mentioned with the PCE, the POD is also appropriate to obtain a reduced
basis for the wave equation. This approach was adopted by Hawkins et al. 2023 to express time-dependent ground
motion with less variables and therefore enable the decomposition of the empirical covariance matrix. Although
their reduced-order model generates reasonable predictions when the geological model is slightly perturbed from
the reference, it is still closely tied to the geological configuration used during training.

2.2 HEMEW-3D database

Our literature review has highlighted several works that relate the source parameters with ground motion intensity,
either in the form of intensity measures or as time series. However, much less investigations have been conducted
on the relationship between geological models and ground motion, especially when considering heterogeneous
geological models. Our study of the Le Teil earthquake showed that a better understanding of the influence of
geological heterogeneities is crucial to include site effects in 3D seismic hazard analyses. Therefore, it appears that
we need a database of various heterogeneous geological models with their associated ground motion to study the
relationship between geology and ground motion.

This section introduces the HEMEW-3D and HEMEW?-3D databases that have been computed for this objec-
tive. Both databases contain 30000 geological models whose description is provided in Section 2.2.2. The main
difference between the two databases lies in the fact that the earthquake source has random properties and loca-
tion in HEMEW>-3D while it is fixed in HEMEW-3D (Section 2.2.3). Since most of the results presented in Chapter 3
have been obtained with a random source, the emphasis is put on the HEMEW>-3D database in this section and
notable differences with HEMEW-3D are pointed out when necessary. For each geological model and each earth-
quake source, the solution of the elastic wave equation was solved with SEM3D and acquired at the earth surface
(Section 2.2.4).

2.2.1 Related work

There exist many datasets of worldwide seismograms that provide ground motion time series at monitoring stations
for local as well as distant earthquakes (e.g. Bahrampouri et al. 2021; Michelini et al. 2021; Mousavi et al. 2019).
Although the datasets of recorded ground motion are incredibly important for machine learning applications in
seismology, they show several limitations. In particular, recordings are sparse in regions with low-to-moderate
seismicity or poor instrumental coverage. In addition, the only geological data associated with the recordings are, at
best, local properties at the recording station which are not sufficient to inform 3D physics-based simulations. The
BB-SPEEDset dataset provides a compilation of simulation results for several past earthquakes (Paolucci et al. 2021)
but the number of simulations is not appropriate for machine learning approaches.

Due to the high computational costs of solving 3D Partial Differential Equations (PDEs), only very few 3D datasets
are publicly available for general physical problems. In geophysics, CO2 underground storage has been explored
with machine learning based on 3D numerical simulations (Grady et al. 2023; Wen et al. 2023; Witte et al. 2023).
To support the study of Witte et al. 2023, Annon 2022 provided 4000 simulation results for 3D CO2 flow through
geological models based on the Sleipner dataset complemented by random fields (Equinor 2020). The Kimberlina
dataset also contains 6000 CO2 leakage rates simulations (Mansoor et al. 2020). However, the geological models in
both databases are all variants of the geological model carefully estimated for a given region, thereby limiting the
reproducibility in other areas.

A few datasets of realistic geological units have been developed, such as the Noddyverse dataset (Jessell et al.
2022). In this dataset, geological models result from the deformation of horizontal layers by successive geologi-
cal events (folds, faults, unconformities, dykes, plugs, shear zones, and tilts) but no associated ground motion is
provided. Along the same line of geological deformation, some databases combine geological models with asso-
ciated waveforms, and target 2D geophysical inversion as the main application (Deng et al. 2022; Liu et al. 2021).
The OpenFWI database also includes real geological models from field survey areas and models of CO2 geological
storage (Deng et al. 2022). The Ef'W/ database is an extension of this work to the elastic wave equation, thereby
providing two-dimensional ground motion time series (Feng et al. 2023).

As a summary, no database provides solutions of the elastic wave equation in 3D domains. Our HEMEW-3D and
HEMEWS>-3D databases intend to fill this gap.
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2.2.2 Heterogeneous geological models

The 3D geological models are designed in terms of S-wave velocities since the average velocity of S-waves in the
top 30 m (denoted Vs 3p) is a well-used proxy to characterize the geological properties of a given site. Geological
models Vg () are non-stationary random fields defined as a 1D model (horizontal homogeneous layers) to which
fluctuations are added, as illustrated in Figure 2.1. The domain is a cube of size 9.6 km x 9.6 km X 9.6 km, discretized
in 32 x 32 x 32 voxels of size 300 m x 300m x 300 m.

Fanoom oM ogensous geological model
layers random fluctuations

s e
surface wavefields

Elaslic wave aguation . e

[
Spectral Elemant Code — ?
— SEM3D s A

Figure 2.1: Geological models are built by adding heterogeneities to randomly chosen horizontal layers. Then, elastic
waves are propagated from a source located randomly inside the domain with random orientation up to the surface,
where velocity wavefields are acquired.
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Homogeneous models

A 1.8 km-thick homogeneous layer is imposed at the bottom of each geological model, with a constant Vs value of
4500 m/s. This layer was originally conceived to contain the source in the HEMEW-3D database and ensure that
the seismic waves would always originate from a region with the same properties. This assumption is relaxed in the
HEMEW?>-3D database but the same geological models are used in both databases for the sake of consistency. Above
the bottom layer, a random arrangement of horizontal layers is designed. The number of horizontal layers N, and
their thickness are randomly chosen for each geological model, with the sole constraint to fill the remaining depth
of 9.6 — 1.8 = 7.8km with 1 to 6 layers. Then, the mean layer-wise Vs value is drawn from the uniform distribution
U([1785;3214 m/s]). The bounds of the uniform distribution were determined to ensure that most values remain
bounded between Vs min=1071 m/s and Vs max=4500 m/s after the addition of random fields (1785 = A07L 13914 =

1-0.4'
14+5894 and 0.4 corresponds to an interval of two 0.2 standard deviation around the mean, interval which contains

95 % of values following a normal distribution). Table 2.2 gives a summary of the geological parameters.

We can already make a few observations. First, the minimum S-wave velocity of 1071 m/s is rather high when
compared to S-wave velocities in soft sediments (typically of few hundreds of m/s) but coherent for hard sediments
(Molinari and Morelli 2011). One should also note that the vertical resolution of the geological models is 300 m
while very low Vs values are more commonly encountered in the first tens of meters and they would be averaged in
our models. Reducing the minimum velocity poses no theoretical limitation but would increase the computational
cost of the subsequent numerical simulations since it increases the number of mesh elements (equation 1.12).
Second, the maximum S-wave velocity of 4500 m/s corresponds to typical Vs values at the bottom of the Earth’s
crust (Molinari and Morelli 2011). Third, we do not constrain the ordering of layer-wise Vs values, meaning that
some geological models may contain layers with Vs values decreasing with depth, which is unphysical. However, the
physics of wave propagation is still satisfied in those situations and these geological models increase the variability
of our database.
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Parameter Statistical distribution

Number of heterogeneous layers N, Uu\{1,2,3,4,5,6})

Layers' thickness hy, - - -, hy, u ({(hl, -+, hyn,) >0lhy + -+ hy, = 7.8km})
Mean Vg value per layer U([1785,3214))
Layer-wise coefficient of variation IN(0.2,0.1)]

Layer-wise correlation length along x U{1.5,3,4.5,6 km})

Layer-wise correlation length along y U({1.5,3,4.5,6 km})

Layer-wise correlation length along z U{1.5,3,4.5,6 km})

Table 2.2: Statistical distribution of each parameter describing the geological models. Mean Vg values, coefficients
of variation, and correlation lengths are chosen independently in each layer. Since the bottom layer has a constant
thickness of 1.8 km, it is not included in these parameters.

To solve the elastic wave equation with SEM3D, the velocity of P waves Vp and the density p are required in
addition to Vs. To reduce the complexity of the problem we aim at solving, we assume that Vp and p can be fully
determined from Vs. More precisely, the ratio of P- to S-wave velocity is fixed to Vp/Vg = 1.7 and the density p is
computed as a function of the P-wave velocity (Molinari and Morelli 2011)

p = 1.6612Vp — 0.4721VA + 0.0671V3 — 0.0043Vp + 0.000106V3 (2.6)
Attenuation factors for P-waves (Q) p) and S-waves ((QQg) are computed as

Vp Vs Vs

Qp = max (207 5> Qs = 10 (2.7)

Addition of heterogeneities

The layers' thickness and mean value describe the general structure of the propagation domain and they corre-
spond to the prior physical information usually available. However, materials in the Earth’s crust contain much
more variability, especially along the horizontal directions. Following the methodology presented in Section 1.2, het-
erogeneities are represented as Gaussian random fields with a von Karman correlation kernel and a Hurst exponent
of 0.1 (marginal distributions are log-normal to preserve positive values). We choose correlation lengths randomly in
{1.5km, 3km, 4.5km, 6 km}, to mix samples with small- and large-scale heterogeneity. In addition, large coefficients
of variation were chosen to provide high geological contrasts, following a folded normal distribution |A/(0.2,0.1)],
with mean 0.2 and standard deviation 0.1. After the addition of random fields on the 1D geological model, Vs values
are clipped between Vs min and Vs max. Figure 1.7 illustrates two geological models from the HEMEWS-3D database.
By allowing large correlation lengths and large coefficients of variation, we create regions with singular properties
that can mimic some forms of sedimentary basins for instance.

It should be noted that all layers have distinct coefficients of variation and correlation lengths, meaning that
different random fields are drawn inside each layer. In particular, this implies that there is no continuation of
random fields across two layers. To facilitate further analyses, a small dataset of 1000 consistent geological models
was also designed. The only difference with the HEMEW>-3D database is that all layers in the consistent model have
the same coefficient of variation o and correlation length £.. Random fields are still drawn independently inside
each layer but it allows to identify one geological model with a pair (o, ).

2.2.3 Source parameters

The earthquake source is represented as a point-wise source, defined by its position x4 and its orientation 5. In
the HEMEW>-3D database’, the source is located randomly inside the propagation domain, not too close from the
boundaries to avoid numerical issues due to absorbing boundary conditions. The source position s = (x5, ys, 25)

"In the HEMEW-3D database, the source position is fixed at (4.8, 4.8, -8.4 km).

41



is chosen from a Latin Hypercube sampling with

xs € [1.2;8.4 km]
ys € [1.2;8.4 km]
zs € [=9.0; —0.6 km)

The source orientation can be described alternatively by the three angles (strike, dip, rake) or by the 6 compo-
nents of the moment tensor?. In the first representation, 8, € R3, the angles are sampled from a Latin Hypercube
with a strike between 0° and 360°, dip between 0° and 90°, and rake between 0° and 360°. In the second represen-
tation, the equivalent moment tensor 8, € RS is computed for each set of angles (Section 1.1.3).

Seismic moment function
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Figure 2.2: The seismic moment function in the HEMEW-3D and HEMEW?®-3D databases

The source amplitude corresponds to a seismic moment My = 2.47 X 10'® N'm and the source time evolution is
a spice bench given by s(t) = 1 — (1 + %) e~ T with 7=0.1s (Fig. 2.2).

2.2.4 Solutions of the wave equation

The elastic wave equation is solved in each domain with SEM3D. The maximum frequency f,.q. One aims at exactly
resolving is chosen at 5Hz, which is relatively high for this type of simulations. Indeed, many simulations have
been conducted so far with an accuracy up to 1 or 2Hz (Rekoske et al. 2023; Rosti et al. 2023), while high-fidelity
simulations for local realistic earthquake scenarios extend up to 10 Hz, and exceptionally up to 18 Hz (Table 1.1).
With 7 Gauss-Lobatto-Legendre quadrature points per side of mesh element and a minimum velocity of 1071 m/s,
this leads to elements of size 300 m. This choice corresponds to the discretization of the geological models in voxels
of size 300 m x 300m x 300m.

Since the numerical scheme of SEM3D solves for velocity values, we consider only ground motion velocity; dis-
placement and acceleration can be obtained afterwards via integration or derivation of the velocity time series. To
maintain reasonable computational loads and reflect real-life situations, velocity wavefields are recorded only at the
surface of the propagation domain. A regular grid of 32 x 32 sensors? is placed between 150 m and 9450 m in both
horizontal directions. At each monitoring sensor, the three-component velocity field is synthetized with a 100 Hz
sampling frequency between 0 and 8 s*. With the surrogate model described in Chapter 3, the velocity wavefields
were low-pass filtered at 5Hz to match the maximum frequency of the simulation, restricted to the time window
[0s; 6.4s] and downsampled from 100 Hz to 50 Hz.

2|n the HEMEW-3D database, the source orientation is fixed and corresponds to the source of the Le Teil earthquake, strike = 48°, dip = 45°,
and rake = 88° (Delouis et al. 2021)

3In the HEMEW-3D database, the grid is coarser and has only 16 x 16 sensors

4In the HEMEW-3D database, velocity fields are synthetized up to 20s but it appeared that most of the ground motion occurs before 8s.
Therefore, the time duration was shortened in the following HEMEWS-3D database

42



2.2.5 Descriptive statistics

Since most of the geological parameters are chosen uniformly randomly (Table 2.2), the geological dataset is well-
balanced: geological models with 1 to 6 layers are equipartitioned and all random fields parameters have approxi-
mately the same frequency. Mean Vg values range from 1756 m/s to 3145 m/s.

Since our surrogate model needs to predict time series, it is interesting to explore the temporal evolution of the
target signals. The first wave arrival time is a crucial parameter for earthquake early warning. It depends on the
distance between the earthquake source and the monitoring sensor, as well as the geological properties on the
propagation path. Wave arrival times are usually determined from recordings, either manually by experts, or with
machine learning methods. However, it is possible to compute approximated arrival times from synthetic velocity
fields since ground motion is almost zero before the first wave arrival. Therefore, we obtained the wave arrival
times for the P-waves as the first time where the amplitude exceeds 0.1 % of the maximum amplitude. Due to the
variability in the source depth and the different wave velocities in the geological models, first wave arrival times vary
significantly between samples and between sensors. Figure 2.3a shows that 10 % of velocity time series are initiated
before 0.66 s while 10 % of time series are still null after 2.18s.
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Figure 2.3: Distributions of the temporal features of velocity time series at each monitoring sensor and for 30000
samples. (a) the first P-wave arrival time is computed on the vertical component (b) the Relative Significant Duration
(RSD) is shown for the East-West component, results are very similar for the two other components

The temporal evolution of ground motion can also be characterized by its Relative Significant Duration (RSD,
defined in Section 1.3.4). Figure 2.3b shows that many time series are relatively short since 25 % of them have a RSD
smaller than 0.36s. This is not surprising since synthetic time series do not contain the high-frequency components
that form most of the seismic coda. However, there are still 10 % of ground motion time series that last more than
2.82s. These observations on the first wave arrival time and on the RSD indicate that the surrogate model needs to
predict time series with very different temporal features.

Figure 2.4a firstly shows that the Peak Ground Velocity (PGV) extends over three orders of magnitude, with the
first percentile being equal to 0.89 cm/s while the 99th percentile equals 129.3 cm/s. When the propagation path is
longer, seismic waves encounter more geological heterogeneities. They create a dispersion and diffraction of waves
that spread the energy signal over time. For an earthquake source located at (x5, ys, z5) and a monitoring sensor
at (z,y, z), the hypocentral distance is defined as

Rhypo = V(@ — 25)2 + (y — ys)? + (2 — 25)2 2.8)

Larger hypocentral distances are associated with longer propagation paths. Figure 2.4a then shows that the PGV is
negatively correlated with the hypocentral distance.
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Figure 2.4: For each sample and each sensor, the PGV is shown against (a) the hypocentral distance, (b) the S-wave
velocity at the source location. The PGV is computed on the East-West component, results are very similar for the
two other components.

It is also known that the seismic energy E generated by a fault rupture is
_ M()AO'
=2

where M is the seismic moment, Ao is the stress drop and p is the shear modulus at the fault location. Knowing
that the shear wave velocity writes Vg = \/m equation 2.9 indicates that the seismic energy is inversely propor-
tional to VS2. And Figure 2.4b confirms that the PGV is negatively correlated with the velocity of S waves at the source
location. The relationships between the PGV and the hypocentral distance, as well as the source S-wave velocity will
be used in Chapter 3 to normalize the outputs of the surrogate model and hence, reduce the variability of ground
motion amplitudes.

E, (2.9)

2.2.6 Dimensionality analyses

In supervised deep learning, it is always challenging to determine whether the size of the database (i.e. the number
of samples) is sufficient to represent its variability. This questions relates to the definition of the intrinsic dimension
of the dataset, which indicates the number of hidden variables that should be necessary to represent the main
features of the samples. In the following, we provide insights on this question with the intrinsic dimension based on
the Principal Component Analysis, the correlation dimension, the Maximum Likelihood Estimate, and the Structural
Similarity Index.

For all methods, let us consider a set of N samples {¢; }1<i<n € RP that can be either geological models or
ground motion wavefields. We assume that there exists a continuous and sufficiently smooth mapping ¢ : R —

R such that each ¢; € R can be identified with q; € R9 via ¢; = g(¢;). From this formulation, d is called the
intrinsic dimension.

Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) decomposes data in principal components that correspond to the directions
where data vary the most. For different sizes of datasets, we compute the number of principal components required
to retain 95 % of variance and define this number as the intrinsic dimension of data. The 3D geological models and
the 3D ground motion wavefields are transformed into 1D vectors to perform the PCA. To reduce the memory
requirements, ground motions are analyzed only on the East-West component. Geological models are represented

44



by 32 x 32 x 32=32768 points and ground motions contain 16 X 16 x 320 =81 920 points (16 sensors in directions
x and y, and 320 time steps between 0s and 6.4s). To ease the computation on the large sample covariance matrix,
an incremental PCA algorithm was used (Ross et al. 2008).

Number of principal components to retain 95% of variance
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Figure 2.5: Number of principal components (y-axis) required to represent 95% of the variance in data as a function
of the dataset size (x-axis) for geological models (left) and ground motion wavefields (right). For ground motion, the
HEMEW-3D database is used for the fixed source (black line) and the HEMEW?-3D database corresponds to the blue
line.

Figure 2.5 shows that more than 1000 principal components are needed to reconstruct the geological models
with high accuracy whereas the intrinsic dimension of ground motion wavefields is much higher. When the source
is fixed (HEMEW-3D database), the intrinsic dimension is 3200 while it increases to 4900 when the source has a
random location and orientation (HEMEW®-3D database). It is reasonable that adding degrees of freedom with a
random source increases the variability of data. However, due to its linearity, the PCA requires a large number of
components to accurately represent complex patterns. Therefore, it may overestimate the intrinsic data dimension.

Correlation dimension

An alternative dimensionality measure was introduced by Grassberger and Procaccia 1983 as the correlation dimen-
sion, which characterizes the distance between pairs of samples. For a given radius r, the correlation dimension
Cn(r) is defined as the ratio of sample pairs (¢;, ¢;);; being at distance less than r

N N
Cn(r) = N(N21)Z > (g — g5l <) (2.10)

i=1 j=i+1

The correlation dimension is determined as the slope of the linear part in the log-log representation of Cy (Fig. A.7).
This definition is subject to some interpretation since one should determine which portion constitutes the linear
part. Nevertheless, we found that small variations of the linear part limits had very little influence on the slope
estimate (less than one unit).

Figure A.6 indicates a correlation dimension of 8 for the geological dataset, which is significantly lower than
the PCA dimension. In fact, it is known that the correlation dimension may underestimate the intrinsic dimension,
especially “when data are scattered” (Qiu et al. 2023), which is likely to be the case in high-dimensional spaces.
However, the correlation dimension of the ground motion wavefields is debatable. It is evaluated around 12 when
the source is fixed and it drops to 2 when the source is random (Fig. A.6). In the latter situation, Fig. A.7c shows that
the log-log representation does not produce an obvious linear part.

MLE intrinsic dimension

Levina and Bickel 2004 proposed another measure of intrinsic dimension based on the Maximum Likelihood Esti-
mator (MLE) of the distance to the closest neighbours. Similarly to the correlation dimension, this method considers
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the Euclidean distance between samples ¢;, ¢; € RP. Denoting Tk (¢) the Euclidean distance between ¢ and its
k-th nearest neighbour in the dataset, the estimated intrinsic dimension at point ¢ is

-1
k—1

di(¢) = ﬁ 2; log ;’;Egi 2.11)
iz

This expression derives from the MLE estimate of dimension d when considering the observation of points in the

neighbourhood of point ¢ as a Poisson process (Levina and Bickel 2004). The global intrinsic dimension dis finally
obtained by averaging over all points and a small number of neighbours 0< ki <ke

d= k2_k1+1NZde i) (2.12)

k=ky i=1

The MLE intrinsic dimension was computed with the scikit-dimension package.
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Figure 2.6: Intrinsic dimension estimated by the MLE (y-axis) as a function of the dataset size (x-axis) for geological
models (left) and ground motion wavefields (right). For ground motion, the HEMEW-3D database is used for the
fixed source (black line) and the HEMEW®>-3D database corresponds to the blue line.

Figure 2.6 shows the evolution of the intrinsic dimension as a function of the number of samples for geological
models and ground motion wavefields. When the source is fixed, the intrinsic dimension of geological models is 34,
which is similar to the one of ground motion wavefields (d=37). This is sound since variability in the wavefields is
created entirely from the variability in the geological models. When the source is random, the dimension of ground
motion wavefields increases significantly (d=110). Although this method may still underestimate data with high
intrinsic dimensionality (Qiu et al. 2023), it provides higher estimates than the correlation dimension.

Structural similarity

The above mentioned measures of intrinsic dimension rely on the Euclidean distance which may not represent well
similarities between samples. Alternative metrics such as the Structural Similarity Index Measure (SSIM) have been
introduced to mimic the human perception of similarity (Z. Wang et al. 2004). The SSIM theoretically ranges from 0
to 1, with 0 indicating no similarity and 1 indicating perfectly similar samples (although values between -1 and 0 can
be obtained numerically from the covariance computation). The SSIM of two samples ¢;, ¢; is defined as

(2uip15 + C1) (2045 + Co)
(uF + 13 + C1) (07 + 07 + Co)
where 11; and 115 are the means of ¢; and ¢;, 0; and o; are the unbiased estimators of the variance of ¢; and ¢,

o0;; is the unbiased estimator of the covariance of ¢; and ¢;, C1 and Cs are constants determined from the range
of ¢; and ¢; values.

SSIM(¢¢,¢]') = (2.13)
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Figure 2.7: The Structural Similarity Index Measure (SSIM) quantifies the visual ressemblance between images, in a
way that should mimic human perception. For each SSIM value s on the x-axis, the percentage of geological pairs
being more similar than s is reported on the y-axis.

We focus on the SSIM between geological models since it indicates a notion of sparsity among the inputs of the
surrogate model. Figure 2.7 shows that only 1.4% of geological pairs have a SSIM greater than 0.2. This means
that geological models are generally very distinct from each other in our database. For comparison purposes, the
2D OpenFWI dataset leads to significantly higher SSIM, with 31 % of geologies having a SSIM larger than 0.2 (3000
models were chosen from each of the 10 OpenFWI families (Deng et al. 2022)).

Partial conclusion on the intrinsic dimension

Many different methods exist to estimate the data intrinsic dimension and we exemplified the well-known fact that
they can lead to very different values. Taking the MLE as a lower bound, one can argue that the intrinsic dimension
of the geological database is at least 30. In addition, the low values of the SSIM indicate that geologies are sparse
and quite distant from each other in the HEMEW>-3D database.

Concerning the ground motion wavefields, the PCA and the MLE confirm the intuition that the intrinsic dimension
is larger when the source has a random location and orientation (HEMEWS-3D database) since it adds variability to
the time arrival of wavefields as well as their location at the surface. In this situation, it is reasonable to consider that
the intrinsic dimension of ground motion is at least on the order of 100. However, if data are decomposed with the
PCA, then the number of principal components is a few thousands. The correlation dimension yields questionable
estimates of the intrinsic dimension that contradict our intuition and the PCA and MLE outcomes.

It can also be noted that the intrinsic dimension increased with the number of samples, for the PCA and the MLE.
This may reflect a flaw in the intrinsic dimension’s definition or it may indicate that despite being already large, our
database of 30000 samples does not capture all the variability.

One should also point out the relationship between the PCA intrinsic dimension and the Kolmogorov d-width,
defined as the best possible error achievable by projecting data in an original space of dimension D onto a linear
subspace of dimension d (Kolmogoroff 1936). If the error is measured with the Lo norm, then it is known that
the PCA is the optimal approximation. Greif and Urban 2019 showed that the Kolmogorov d-width cannot decay
faster than id_l/g for an example of the second-order equation. This is in line with our observations that good
approximations can only be achieved with a large number of principal components.

2.3 Reducing the dimension of geological models

Although the MLE and the correlation dimension provide small estimates of the intrinsic dimension, one cannot
compute the associated reduced basis. With the PCA on the contrary, it is easy to compute the basis of principal
components and hence, represent the geological models with their basis coefficients. Then, one obtains reconstruc-
tions of geological models that depend on the number of principal components retained in the basis.
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It has already been mentioned that the linearity of the PCA is one factor explaining the high intrinsic dimension.
Auto-encoders are among the most popular deep learning methods to reduce the dimensionality of inputs (Hinton
and Salakhutdinov 2006) and they are often viewed as a nonlinear extension of the PCA. Auto-encoders have been
largely used in various fields to encode complex datasets into reduced order manifolds (e.g., Kadeethum et al. 2022;
Ladjal et al. 2019), but their application on 3D data remains spurious (Gangopadhyay et al. 2021; Tekawade et al.
2021; Yu et al. 2021).

In this section, we focus on the decomposition of geological models. The relationship with ground motion is
only assessed afterwards from the reconstructed geology. This analysis is considered as a preliminary study to
investigate the feasibility of a surrogate model built on a reduced basis.

2.3.1 3D auto-encoder with a UNet architecture

By considering geological models as 1D vectors, the PCA looses the spatial organization of 3D geologies. To obtain
the same reconstruction error, one may therefore expect a greater dimensionality reduction with a 3D auto-encoder
than a PCA. The auto-encoder is made of two sub-networks, namely an encoder that associates a 3D geological
model with a latent representation of reduced dimension and a decoder that reconstructs a 3D geology from the
latent representation while trying to minimize the error between the input and the reconstruction.
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Figure 2.8: 3D UNet auto-encoder with 6 blocks of double convolutions (4 million parameters in total). Skip connec-
tions between the encoder and decoder are done via concatenation.

Our 3D auto-encoder is built from the architecture of the 3D UNet developed by Wolny et al. 2020. We conducted
an exhaustive search of the main hyperparameters to adapt the proposed architecture to our objectives. Our final
encoder is composed of 6 blocks that increase the number of channels of the inputs from 1 to 256. As represented
in Figure 2.8, each block is composed of two convolutional layers. Blocks are separated by max pooling layers to
reduce the dimensionality from 32 x 32 x 32 with 1 channelto 1 X 1 X 1 with 256 channels. A batch size of 16 was
found to produce lower reconstruction errors than larger batches for both training and validation datasets. The
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decoder is made of 6 blocks of 2 transposed convolutional layers separated by upsampling to increase the spatial
dimensions.

The database of 40000 geological fields was split in 90 % of training and 10 % of validation data. Inputs were
centered and normalized by 4 times the standard deviation, moving values approximately into [—0.5,0.5]. The
training loss was simply composed of the L1 reconstruction error. The Adam optimizer was used with a learning
rate of 2 x 1074, Training the network for 1000 epochs on 4 Nvidia Ampere A100 GPUs took 9.5 h.

2.3.2 Assessing the reconstruction accuracy

Based on the analysis of the intrinsic dimension, the PCA is applied on 40000 geological models with 1024 com-
ponents. Figure 2.9 shows that geological models reconstructed with 1024 principal components are visually close
to the inputs. Indeed, the heterogeneities’ size and location correspond to the inputs. However, it can be noted
that geological fields reconstructed with the PCA lack some sharpness in the geological heterogeneities and can
appear blurrier than the input. This is especially visible on samples with a high coefficient of variation (e.g. last
row of Figure 2.9). For those samples, more than 1024 principal components are necessary to capture the small
scale heterogeneities. Quantitatively, the median Root Mean Square Error (RMSE) on all samples is 90 m/s, which
corresponds to 8.6 % of the minimum Vs value (Fig. 2.10).
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Figure 2.9: Each row represents one geological model from the test dataset of 4000 samples. (Left column) original
field. (Middle column) reconstruction with a PCA with 1024 principal components. (Right column) reconstruction
with a 3D UNet autoencoder. RMSE = Root Mean Square Error.

Reconstructions obtained with the 3D UNet are generally satisfying since heterogeneities are well reproduced.
The median RMSE is 85m/s, which is slightly lower than the PCA error (Fig. 2.10). Interestingly, Figure 2.10 shows
that the PCA and the 3D UNet lead to very different error distributions despite having a similar median error. While
the PCA reconstruction error resembles a normal distribution, the 3D UNet histogram has more values close to 0.
This means that the 3D UNet is able to create more reconstructions with a very low error. As a counterpart, the 3D
UNet also leads to more geological models with poorer reconstructions than the PCA. Among the geologies showing
a high reconstruction error with the 3D UNet, many have a low coefficient of variation (an example is visible on the
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first row of Figure 2.9). In those cases, the large error derives from a biased reconstruction by the neural network.
One possible explanation is the fact that the 3D UNet was initially proposed for segmentation, which means that
the architecture is well-suited to detect edges, but it may be less sensitive to the mean value when no clear edges
are visible. We also found that adding a penalization term on the mean bias in the loss function did not improve the
biased reconstructions.
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Figure 2.10: Reconstruction error on 4000 test geological fields using a PCA with 512 components (in grey) and 1024
components (in brown), and the 3D UNet (in red). Top: histogram of the error. Bottom: boxplot of the error, boxes
extend from the 1st to the 3rd quartile, line shows the median.

2.3.3 Influence of the dimension on ground motion response

More importantly than the reconstruction error, we are interested in the ground motion generated from the recon-
structed geological models, compared to the ones generated from the input geologies. As an illustrative example,
we choose one geological model with a rather large reconstruction error, around 135 m/s for both the PCA and the
3D UNet. This example represents the general observations obtained for the ground motion of 250 reconstructed
geologies. ARMSE of 135 m/s corresponds to the third quartile of the reconstruction error for both PCA and 3D UNet
(Fig. 2.10). A point-wise source is located in the bottom layer and seismic waves propagate up to the surface (same
methodology as the HEMEW-3D database), in the input geology as well as the geologies reconstructed by the PCA
and by the 3D UNet. Figure 2.11 compares the ground motions generated through the original and reconstructed
geologies by displaying GOF scores at the surface.

Figure 2.11 shows that a vast majority of sensors exhibit GOFs above 8, which is considered as an excellent
agreement. Therefore, despite a large reconstruction error on the geological model, the surface ground motion is
still very close to the reference one. One can also notice that the various types of errors described above for the
PCA and the 3D UNet have very different consequences on the ground motion generated through the reconstructed
geological models. For the PCA reconstruction, the envelope GOFs are slightly worse than the phase GOFs. This is
exemplified in Figure 2.12a where the signal amplitude is higher with the reconstructed geology than the input one.
This can be explained by the lack of small-scale heterogeneities that should have diffracted and reflected seismic
waves. Signals propagated through the reconstructed geology are therefore less attenuated than the reference
ones. However, the wave arrival times are very well reproduced since the mean velocity is correctly reconstructed
by the PCA.
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Figure 2.11: Goodness-Of-Fit (GOF) for each sensor on a 32 x 32 grid at the surface (10 means a perfect agreement).
Each GOF is given for the three velocity components: East-West (E), North-South (N), Vertical (Z) axes. EG: Envelope
GOF, PG: Phase GOF. The black triangles show the position of the sensor in Figure 2.12.

On the contrary, ground motion responses of the geological model reconstructed by the 3D UNet differ from
the input mostly in terms of phase (Fig. 2.12b). Since the 3D UNet underestimates (for this specific sample) the
mean velocity, the reconstructed signal is delayed with respect to the reference one. However, amplitudes are well
reproduced thanks to the good reconstruction of small-scale heterogeneities.

2.4 Conclusion

The aim of this chapter was to investigate machine learning based surrogate models that fulfill three requirements:
i) a parametrization with different 3D heterogeneous geological models, ii) a dependence on the earthquake source
properties, iii) the prediction of time series for each spatial point. Although several works on Gaussian processes,
polynomial chaos expansion, and reduced-order models satisfy one or two of these requirements, no methodology
was able to combine them all.

It then became necessary to build a database of ground motions associated with geological models that suits
the framework of this work and allows us to design a new surrogate model. Our HEMEW?-3D database is made of
30000 3D heterogeneous geological models. It contains small-scale heterogeneities to investigate scattering effects
as well as large-scale heterogeneities that represent hypothetical geological characteristics of the Earth's crust. Each
geological model serves as the propagation domain for seismic waves generated from a point-wise source with a
random location and orientation inside the domain.

The HEMEW?-3D database exhibits a large variability on several aspects. The amplitude and duration of ground
motion is widespread and depends, among other factors, on i) the hypocentral distance since longer propagation
paths tend to reduce the PGV and increase the duration, ii) the seismic energy generated by the source, iii) the geo-
logical heterogeneities that induce dispersion and diffraction of seismic waves. This variability was quantified with
several measures of intrinsic dimension in the ground motion database. Although there are several PCA methods,
the analysis focused on the linear PCA. Thousands of principal components are required to capture the variability
of ground motion with very good accuracy (95 % of the explained variance). Non-linear estimates of the intrinsic
dimension based on the correlation dimension and the MLE indicate intrinsic dimension at least of the order of 100.
While it is impossible to conclude on the exact intrinsic dimension of data, these analyses indicate that predicting
the solution of the wave equation in 3D heterogeneous geologies is certainly a high-dimensional problem.

Relying on a drastic reduction of the input dimension does not seem either a very promising approach for a
reduced-order surrogate model, based on our analyses of the PCA and the 3D auto-encoder. The PCA was com-
puted with 1024 components to retain good reconstruction abilities. The latent space of the 3D UNet was designed
with only 256 variables to enforce a greater reduction than the PCA. However, it should be noted that the skip con-
nections between the encoder and the decoder transmit part of the information. In our experiments, we found
that the reconstruction quality severely degrades when removing the skip connections. Without skip connections,
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Figure 2.12: For the sensor depicted by the black triangles in Figure 2.11, velocity ground motion along the North-
South component. Black: ground motion obtained with the input Vg field. Red: ground motion obtained with the
Vs field reconstructed by (a) PCA and (b) 3D UNet. GOFs are represented in the frequency (FEG and FPG), time-
frequency (TFEG and TFPG), and time (TEG and TPG) domain for the envelope (top) and phase (bottom).

the latent space needed to be larger than 1024 to provide correct reconstructions, which limits the benefits of the
dimensionality reduction.

By propagating seismic waves through the geological models reconstructed by the PCA and the 3D UNet, we
showed that the selected number of components was a minimal requirement to preserve the ground motion accu-
racy. It appeared that the PCA smooths small-scale heterogeneities, thereby leading to ground motions with larger
amplitudes than the original ones. The only way to alleviate this issue would be to increase the number of principal
components, which is not the desired direction. Different conclusions were drawn for the geological models recon-
structed by the 3D UNet. The reconstruction error was somewhat similar to the one obtained with the PCA, with
more geologies having an even better reconstruction. Especially, the 3D UNet was able to produce sharp outputs
with small-scale heterogeneities being well preserved. However, some reconstructions were biased and yielded a
time shift in the output ground motion.

In conclusion, these results show that we need another way to design a surrogate model of seismic waves propa-
gation. Instead of trying to reduce the dimension of inputs into a 1D variable, we can take advantage of the cartesian
structure of the geological models and ground motion wavefields to compute efficient Fast Fourier Transforms (FFT)
of the data. Chapter 3 elaborates on the Fourier Neural Operator (FNO) that uses FFT to predict the full ground
motion wavefields. Following the energy analysis of Chapter 1, one can estimate that running 30 000 SEM3D simu-
lations to build the HEMEW®>-3D database amounts to an energy consumption of 3.3 MWh (Tab. 2.3).

Task Number of realizations | Energy consumption (MWh)
SEM3D simulations 9.6 km x 9.6km x 9.6km, T7=6.4s Ntrain = 30000 3.3

Table 2.3: Estimation of the energy consumption required to build the database. The energy consumption of 1 CPU
is estimated to 4.88 Wh. One SEM3D simulation lasts in average 22.72 h CPU. Although the database contains time
series of duration 8s, we count only the 6.4 s used with the surrogate model in Chapter 3.
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Chapter 3

Predicting ground motion with Fourier
Neural Operators

Large datasets of internationally recorded earthquakes have enabled successful deep learning applications in seis-
mology, in tasks as diverse as: localizing the hypocenter, characterizing the type of source (earthquake, blast, am-
bient noise) and the type of earthquake (subduction, crustal, etc.), picking the phase of P- and S-waves for wave
arrival determination, reconstructing missing recorded data, detecting geological faults, imaging the sub-surface
from ground motion recordings, etc (see Mousavi and Beroza 2023; Kubo et al. 2024 for reviews of deep learning
in seismology). Focusing on the prediction of ground motion features, we should distinguish several applications.
Early works start with a Multi-Layer Perceptron (MLP) that connects all artificial neurons between two consecutive
layers (Fig. 3.1). Within this framework, MLPs are similar to GMPEs in the sense that the input layer gathers all
parameters that are expected to influence ground motion (e.g. earthquake depth, moment magnitude, source ori-
entation, epicentral distance, Vs 3¢ at the location of interest) and the output layer contains one neuron per ground
motion feature to predict (e.g. PGV, PGA, PSA at various periods). Besides the numerous works based on recorded
earthquakes (e.g. Alavi and Gandomi 2011; Derras et al. 2016; Kalakonas and V. Silva 2022), L. Lehmann et al. 2023
used physics-based simulations with a given 1D geological model and randomly chosen seismic sources to create a
dataset of PGD, PGV, PGA from synthetic ground motions. This dataset was then used to train a MLP.
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Figure 3.1: Example of a Multi Layer Perceptron (MLP) predicting ground motion features from earthquake parame-
ters and features of the location of interest. For the sake of clarity, only a fraction of the inter-neuron connections is
depicted.

Instead of considering scalar inputs that are dependent on the accuracy of the pre-processing step, ground
motion features can be predicted directly from the full ground motion time series. This approach is especially
useful in the context of Earthquake Early Warning (EEW) when the peak ground motion can be predicted from the
first seconds of ground motion recordings. Indeed, early ground motion does not contain the peak values of the
S waves, which allows to send early alerts to stations farther from the epicenter. Convolutional Neural Networks
(CNN, LeCun et al. 2015) achieve this task by applying learnable kernels to the time series and extract ground motion
features (Hsu and C.-W. Huang 2021; Jozinovi¢ et al. 2020), Recurrent Neural Networks (RNN) take advantage of the
temporal structure of ground motion waveforms to predict peak ground motion (Mousavi and Beroza 2020; A. Wang
et al. 2023), while Graph Neural Networks (GNN) benefit from the spatial arrangement of seismic sensors to learn
the distance between stations (Bloemheuvel et al. 2023; Murshed et al. 2023) and Transformers learn an attention
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mechanism that informs ground motion predictions with a notion of similarity between sensors (Minchmeyer et al.
2021).

However, these methods are not suitable for structural analysis since the ground motion dynamics is not learnt
and only peak values are available. To predict ground motion time series, Datta et al. 2022 used RNN in the context
of EEW to predict the next 10s of ground motion from the first 15s. Generative Adversarial Networks (GAN) have
also seen several applications to create synthetic ground motion time series that resemble those from a recorded
dataset (see Marano et al. 2023 for a review of GANs in seismology). In particular, the generation can be conditioned
on properties such as the magnitude, epicentral distance, or Vs 3¢ (Esfahani et al. 2022; Florez et al. 2022). Shi et al.
2024 extended this method with a U-shaped Neural Operator (Section 3.2.2) that can handle different resolutions,
although this advantage has not been investigated by the authors.

Although most of the above-mentioned works contain some information about the geological context (for in-
stance through the Vs 3p), these scalar properties give limited information on the physical propagation of seismic
waves between the source and the receiver. More detailed information can be obtained when considering geo-
logical models as inputs of the neural network. Moseley et al. 2020 proposed an auto-encoder to convert a 2D
geological model into a time-depth image that stacks ground motion time series recordings on a line of sensors. Ge-
ological models are randomly generated from a superposition of horizontal layers fractured by a fault and outputs
are generated from the simulation of the acoustic wave equation. This example approaches our target application,
even though the prediction is disconnected from the underlying Partial Differential Equation (PDE). At this point,
we should also notice the numerous deep learning applications in full waveform inversion, where an image of the
sub-surface properties (Vs for instance) is predicted from a time-depth image of recordings. Reviews can be found
in Adler et al. 2021; Y. Lin et al. 2023 and we can mention InversionNet3D (Zeng et al. 2021) as one of the few 3D
models, based on an auto-encoder made of CNN layers and invertible layers.

Contrary to data-driven methods, some neural networks are purely physics-informed and do not require any
training data. Prominent representatives of these approaches are Physics-Informed Neural Networks (PINN, Raissi
et al. 2019) where neurons in the input layer correspond to the spatial € €2 and temporal query points ¢ € [0, 7]

and the output layer gathers the solution u(x,t). The derivatives %(w, t),Vyu(x,t),--- can be computed effi-
ciently with automatic differentiation. Then, the loss function constrains u to satisfy the PDE, providing a PDE solu-
tion without the need for any additional data. PINNs have seen many applications on the acoustic wave equation
(Rasht-Behesht et al. 2022) and the 2D Helmholtz equation with geological models of various complexities (e.g. X.
Huang and Alkhalifah 2022; Song et al. 2022; Song et al. 2023). Since PINNs are mesh-free, they can be used to solve
the wave equation with non-flat surfaces and explore the influence of topography on ground motion wavefields
(Song et al. 2022; Ding et al. 2023). However, training PINNs is challenging, especially for high-frequency features.
These difficulties are related to the conditioning of a differential operator in the PDE one aims at solving (De Ryck
et al. 2023). Several approaches have been followed to mitigate this effect, such as pre-training PINNs with lower
frequency signals (X. Huang and Alkhalifah 2022) and adding a new layer of Gabor basis functions to localize the sig-
nals (Alkhalifah and X. Huang 2023). Although some advanced training procedures have been proposed to improve
the flexibility of PINNs (Cheng and Alkhalifah 2024), another drawback lies in the fact that PINNs are tightened to a
given geological model and training needs to restart from scratch when geology changes.

It then becomes desirable to learn the solution of a PDE for a class of PDE parameters, input and/or boundary
conditions. Scientific Machine Learning (SciML) emerged in this context to design deep learning approaches that
have strong relationships with the PDEs they aim at solving (N. Baker et al. 2019). In this work, we focus on the
forward problem of the elastic wave equation 1.2 and rewrite it as

L(a,xs,0,,u)(x,t) =0,V € Q,Vt € [0,T] (3.1)

where we remind that a : Q — R is the PDE parameter (S-wave velocity), , € R? is the source position, 8, € R3
or 5 € RY is the source orientation, and u : © x [0,Tf] — R? is the solution of the elastic wave equation. The
boundary condition is fixed to absorbing boundary conditions on all surfaces excepting the traction-free top surface.
The solution of the elastic wave equation is then given by

u = g(a7m8705) (3.2)

so as to satisfy equation 3.1. Typically, SEM3D plays the role of the operator G and it is assumed that the numerical
solver provides an error-free solution in the frequency range of validity. We aim at finding a surrogate model G
parametrized by ¢ that is a good approximation of G. The surrogate model is obtained with supervised learning
as the solution of a regression problem. More precisely, for a set of inputs (a’, %, 6%)1<i<n, the corresponding
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solution (Ui)lgiSN is computed with the numerical solver G. From these training samples, we aim at finding the
optimal parameter ¢*

N
¢* = arg min > NIGy(al, @k, 0%) — (3.3)
i=1
where || - || is a norm to be specified. This framework is often called a parameter-to-solution mapping since the

surrogate seeks the solution u that corresponds to a given set of parameters (a, s, ;).

In the following, we review some SciML works applicable in our context and, due to the vast and rapidly expand-
ing literature, we give a particular emphasis to approaches that have already seen applications with wave propaga-
tion (Section 3.1). Among the wide variety of methods, the Fourier Neural Operator (FNO, Z. Li et al. 2021) fulfills our
requirements and its methodology is detailed (Section 3.2). Our first study of the FNO involved the U-shaped variant
of the FNO (U-NO, Rahman et al. 2023), with which we provided the first prediction of the 3D wave equation using
neural operators in F. Lehmann et al. (June 2023). “Fourier Neural Operator Surrogate Model to Predict 3D Seis-
mic Waves Propagation”. In: 5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational
Sciences and Engineering. Athens, Greece. DOI: 10.7712/120223.10339.20362

Our next developments were done with the Factorized Fourier Neural Operator (F-FNO, Tran et al. 2023) that
greatly reduces the number of parameters and improves the predictions accuracy. With this method, the choice of
hyperparameters was thoroughly investigated and some of the analyses are reproduced (Section 3.3.3 and 3.4.1).
Using the HEMEW-3D with a fixed seismic source, we showed that predictions of the 3D elastic wave equation can
be efficiently obtained thanks to a depth-to-time conversion (detailed in Section 3.2). This work was published in
F. Lehmann et al. (Feb. 15, 2024b). “3D Elastic Wave Propagation with a Factorized Fourier Neural Operator (F-FNO)".
in: Computer Methods in Applied Mechanics and Engineering 420, p. 116718. 1ssN: 0045-7825. Dol 10.1016/j . cma.
2023.116718

Then, we introduced our Multiple-Input Fourier Neural Operator (MIFNO) that enables the first prediction of the
3D elastic wave equation depending on both the geological model and the source characteristics. After analyzing the
results accuracy (Section 3.3), we try to understand the prediction error and how it relates to input parameters (Sec-
tion 3.4). We finally test the generalizability of the MIFNO in different settings to assess its robustness (Section 3.5).
This work is currently under review in the Journal of Computational Physics: F. Lehmann et al. (2024c). Multiple-Input
Fourier Neural Operator (MIFNO) for Source-Dependent 3D Elastodynamics. arXiv: 2404 .10115. preprint.

3.1 Scientific Machine Learning for PDEs

When trying to solve PDEs with deep learning, one first approach consists in exploiting the advantages of available
numerical solvers, such as their accuracy, and mitigating their weaknesses with deep learning. In particular, the
computational time is often the bottleneck of numerical solvers, especially when refining the mesh, and neural
networks can significantly reduce the total time (Section 3.1.1). However, it is also desirable to obtain a surrogate
model that can run independently from a numerical solver, once duly trained. In this direction, a line of work relies
on the assumption that PDE solutions evolve in a subspace of reduced dimension (e.g. X. Huang et al. 2022, Z. Li et al.
20233, Bhattacharya et al. 2021, P. Chen et al. 2024, Regazzoni et al. 2023, Lee and Carlberg 2021, Venturi and Casey
2023). Building on ideas already developed in Section 2.1, these deep learning approaches rely on neural networks
to exhibit a database of basis functions. Most of these approaches are auto-regressive and need to compute the
solution at time ¢t — 1 to compute the results at time ¢, which can hinder the accuracy for long prediction horizons.
Also relying on a form of basis functions, the Deep Operator Network (DeepONet, Lu et al. 2021) was one of the
earliest methods to provide PDE solutions for a class of PDE parameters (Section 3.1.2). Neural operators are defined
as an extension of neural networks when inputs and outputs are functions. Deriving from the theory of kernel
integral operators and benefiting from the efficiency of the Fast Fourier Transform (FFT), the FNO has seen many
developments and several applications around the wave equation (Section 3.1.3).

3.1.1 Interfacing numerical solvers with machine learning

The speed of neural networks predictions makes them ideal candidates to accelerate the most demanding opera-
tions of numerical solvers. Numerical simulations are especially costly when run for high frequencies and refined
meshes (the latter being often a necessary condition for the former). In this setting, neural networks can learn the
mapping from a coarse grid to a finer grid. Coarse grid solutions are typically obtained with numerical solvers at
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moderate computational costs and, after training, the neural network provides the corresponding fine-grid solution.
For instance, seismic inversion was tackled with 2D finite differences enhanced by a UNet auto-encoder (Gadylshin
et al. 2021).

The computational costs of numerical solvers also arise from repeated iterations to reach convergence of min-
imization problems, such as Newton iterations. These processes become significantly faster if one is able to start
from a suitable initialization value. CNN auto-encoders have been used as preconditioners for a numerical solver of
the Helmholtz equation (Azulay and Treister 2023; Lerer et al. 2023). Some iterations can also be directly replaced by
neural networks such as DeepONet (E. Zhang et al. 2022), whose architecture will be specified in Section 3.1.2. Sub-
stantial speed-ups can also be achieved by learning optimal parameters in standard numerical integration schemes
(Mishra 2018).

3.1.2 Deep Operator Networks

The Deep Operator Network (DeepONet, Lu et al. 2021) originates from the universal approximation theorem and
relies on an architecture split in two sub-networks. On the one hand, a branch network takes PDE parameters

discretized at several points {a(z1),- -, a(xy,)} as an input and predicts a latent vector b = (by,--- ,b,). Inour
framework, the input would correspond to the evaluation of a geological model at some sensors but it could also
be an initial or boundary condition. On the other hand, a trunk network predicts a latent vector r = (ry,--- ,7p)

from the coordinates (x, t) where one would like to obtain the solution. Then, the output is obtained as the scalar
product (b, ) and it should approximate the solution of the PDE parametrized by a, G(a)(x, t). The choice of layers
inside the branch and trunk networks is flexible but fully connected and convolutional layers are commonly found.
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Figure 3.2: lllustration of the vanilla DeepONet (Lu et al. 2021) made of a branch network and a trunk network. For

a PDE parameter a discretized at points z1,- -+ ,z,, and a query point (x, ), it outputs the solution of the PDE
defined by a at the query point, G(a)(x, t).
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Among the many DeepONet extensions, one can notice the Physics-Informed DeepONet that constrains the
solution to satisfy a given PDE with an additional term in the loss function, thereby reducing the number of training
data (S. Wang et al. 2021). The MIONet augments the architecture with several branch networks to accept multiple
inputs (Jin et al. 2022). A variant called GreenONet was designed to predict the Green function solution of the wave
equation when the initial condition is given as an input (Aldirany et al. 2023). A 2D DeepONet was also applied for
seismic inversion but it was complemented with a FNO to predict 2D maps of geological models (M. Zhu et al. 2023).
However, Haghighat et al. 2024 noted that “DeepONets show weakness in learning operators in which the output
solution moves spatially, corresponding to variations in the input function”. Therefore, they designed an Extended-
DeepONet that becomes aware of the function localization and used this model to solve the Eikonal equation. The
DeepONet surrogate model was then used as a replacement of a numerical solver to find the earthquake hypocenter
as the minimizer of a traveltime problem.

However, all of these works involve mapping inputs with a p-dimensional vector and to the best of our knowl-
edge, this has not been achieved for 3D inputs. When considering 3D heterogeneous geologies, the input discretiza-
tion must be fine enough to capture the small-scale geological heterogeneities, which leads to high-dimensional
inputs. And the analyses conducted with the PCA and the 3D UNet have not led to any 1D geological encoding with
a reasonable size. On the contrary, the FNO strongly relies on a regular discretization of the inputs.

3.1.3 Fourier Neural Operators and variants

Before explaining the FNO architecture in the next Section 3.2, we review existing works based on the FNO that
tackle wave propagation problems. Similarly to the DeepONet, the FNO takes as input the initial condition, boundary
condition, or parameter of a PDE and predicts its solution. For time-dependent PDEs, the FNO can either predict the
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solution in an auto-regressive manner where u(x,t + 1) is obtained from u(x, t), or by augmenting the problem
dimension, predict the entire solution (u(x,t = 0),--- ,u(x,t = T')) in a single iteration.

The FNO and several variants were shown to be efficient surrogate models for the 2D wave equation, using
the acoustic (Wei and L.-Y. Fu 2022; Y. Yang et al. 2021), elastic (O'Brien et al. 2023; Y. Yang et al. 2023; T. Zhang et
al. 2023), or Helmholtz (B. Li et al. 2022) formulation (Tab. 3.1). Although the FNO was used for different objectives
such as predicting high-frequency components from low-frequency features (Song and Y. Wang 2022) and predicting
the following time steps based on the first iterations (Wei and L.-Y. Fu 2022; T. Zhang et al. 2023), several studies
map a 2D geological model with the ground motion generated through this model. Geological models are obtained
from random fields with a homogeneous background (coefficient of variation around 0.1), geometrical constructions
where objects are embedded into a homogeneous background and create sharp discontinuities, or the OpenFWI
dataset that contains different types of layers (Deng et al. 2022). When predicting solutions of the 2D elastic wave
equation, Y. Yang et al. 2023 also consider a varying Vp/Vs ratio via random fields with large correlation lengths.

FNO applications in 3D are rare, especially for time-dependent PDEs. We were the first to show that the FNO can
predict solutions of the 3D wave equation with the U-NO (F. Lehmann et al. 2023) and then, the F-FNO (F. Lehmann
et al. 2024b). We proposed a depth-to-time conversion to predict the solution only at the surface of the propagation
domain, where observations are usually available in real-life situations. Kong and Rodgers 2023 and C. Zou et al.
2023 instead use a 4D FNO (resp. 4D U-NO) to predict solutions of the elastic wave equation at all points in the
domain but this leads to high computational and memory requirements.

In 2D and 3D, some studies consider both the source location and the geological parameters as input variables
(Kong and Rodgers 2023; O'Brien et al. 2023; Y. Yang et al. 2023; C. Zou et al. 2023). Yet, these works do not take into
account the different nature of the geological and source parameters: a structured 2D or 3D field for the geology
and a vector of coordinates for the source. The source position is encoded as a binary field where a single pixel of
value 1 describes the source location. In addition, an earthquake source cannot be described solely by the source
location since its orientation also plays a crucial role, through the definition of the moment tensor. With the notable
exception of O'Brien et al. 2023 that restricts their analyses to 2D and mention "significant challenges" to extend
their methodology to 3D, the above-mentioned works consider an isotropic explosive source. In this situation, the
moment tensor is fixed and does not need to be learnt by the surrogate model. But it prevents earthquake modelling
that requires a moment tensor description of the source. We propose the MIFNO architecture to include both the
source location and moment tensor by considering their vector representation.

3.2 Fourier Neural Operator for the elastic wave equation

3.2.1 Fourier Neural Operator principles

Let us consider a PDE that depends on parameters a and the source term f(X;) = f(xs, 05)
Lou(z,t) = f(Xs)(x,t) (3.4)

Let us introduce the variable £ = (z,t) to ease the notation and Q¢ = Q x [0,Ty] where @ = [0; A]® is the
propagation domain and 7y > 0 is the final time. For the theoretical introduction of the surrogate model, we
consider that w has values in R and the reasoning can be easily extended to the different components of the solution
in the case of multi-dimensional outputs. If G, :  x  — R is the Green function solution of

LaGa(éa ) = 5{7 (3.5)

it is well-known that the general solution w can be obtained as a convolution of the Green function and the initial
condition

) = [ Gule.&)f€)a¢ 36
3
Z. Li et al. 2020 proposed to model the Green function G, as a neural network x,, with parameters 1

Ga(&,€) = ky (£,€,a(8),a(E")) (3.7)

Embedding the integral formulation 3.6 with the kernel neural network, one can then introduce hidden variables
Vo, ,Up, -+ ,vr, that are obtained via

vey1(é) =0 <er(§) + /Q fw(&i’,a(&%a(&’)w(&’))%’) (3.8)
13
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where W is a bias matrix and ¢ is the activation function (Gaussian Error Linear Unit, GELU, Hendrycks and Gimpel
2023). The integral operator appearing in Eq. 3.8 is denoted

Ky(a)ve() ;:/ Ky (€€, a(€), a(€)) ve(€)de’ (3.9)

Qe

K is a crucial component of the FNO and it concentrates most of the weights learnt by the network. It also requires
computing an integral, which is always a numerical challenge, addressed by the Fourier formulation (detailed below).

In the parameter-to-solution framework, the surrogate model predicts the solution u from the input a. To achieve
this, Z. Li et al. 2020 defines the learning a — w as an iterative process

(CL(;)) 2y 00(6) Dy 01(6) = - T wg(€) = - T 0p(€) S u(e) 3.10)

Iterations can be decomposed in three main parts that are detailed hereafter: an uplift block P, a succession of
Fourier layers F1, - -- , Fr, and a projection block @ (Fig. 3.3).
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g r'E' i |\ - 5 ¢
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Figure 3.3: FNO architecture to predict the three components of ground motion ug, uy, uz from the geology a

It is important to note that the formulation is given for functions of £ and this notation is preserved in the
following. Indeed, neural operators predict functions, contrary to neural networks that predict scalar values. Also,
we focus on the parameter-to-solution methodology since it corresponds with our objective. But the FNO can also
be used to predict the solution from the initial conditions or to predict the solution at time ¢ + 1 from the solution
at time ¢ with the same implementation.

Uplift block P

The first step of the iterative process (Eq. 3.10) is an uplift block P that i) combines the input a with coordinates
and ii) increases the data dimension by augmenting the number of channels. The input a is represented as a 3D
tensor that contains the discretization of the function a on a Cartesian grid (;, yj, 2k )1<i<8,,1<j<S,,1<k<s. C
with regular spacing Az, Ay, Az. To preserve the functional representation of the neural operator, the architec-
ture should ensure that predictions can be queried at any point € 2 at inference stage. This is achieved by
combining the point's coordinates x;, y;, z; With the input value at this point a(z;, y;, 2). In practice, the point
x = (zi,yj, 2) is identified with its image in the unitary cube [0, 1]*: Z = (A:L‘Sim, Aysiy, Azsﬁz) The four values
a(xi, yj, zk), Ti, Uj, 2k are then given as inputs to the uplift block P (Fig. 3.4).

The second objective of the uplift block is to embed the inputs into a higher-dimensional space. To do so, P con-
sists of two dense layers to produce hidden variables vy(z;, y;, 2) € R% (Fig. 3.4), where d,, is a hyperparameter
to tune (the reference is chosen as d,,=16 in this work). Finally, from the concatenation of four matrices (a, z, y, 2)
each being of size S, x S, x S;, P outputs a four-dimensional hidden variable vy of size S, x S, X S, X d,. It
should be emphasized that P acts point-wise and therefore, the mapping involves the same weights at each point.
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Figure 3.4: The uplift block P consists of two dense layers with 128 neurons each, followed by GELU activation. It
takes as input the PDE parameter a and coordinates z, y, z. It outputs the first hidden variable vy. Note that only a
fraction of the inter-neurons connections are displayed for the sake of clarity.

Fourier layers F}

Equation 3.6 involves computing an integral on the domain )¢, which is a main computational concern. The original
formulation of Z. Li et al. 2020 used a graph to compute the value at point £ from the values of points in a neigh-
bourhood of fixed radius. However, the computational efficiency can be significantly improved by relying on the Fast
Fourier Transform (FFT). For this purpose, Z. Li et al. 2021 assumes that x,, is a convolution kernel, i.e. stationary
and independent from a, (&, &', a(€), a(f’)) = ry (€ — &). Thanks to this assumption, the integral operator can
be written as a convolution

Ky(a)vg = Ky * vg (3.11)

From the convolution theorem, the convolution can be written as a product in the Fourier space
Ky(a)vy = FFT ™' (FFT(ky) - FET(v)) (3.12)

Since ry is a neural network whose weights need to be learnt, they can be learnt directly in the Fourier space by
defining Ry, := FFT(ky). Transforming Eq. 3.8 with this method leads to the formulation of the Fourier layer

Vi1 =0 (Wog+ FET ' (Ry - FFT(vy))) (3.13)

To reduce the number of learnable weights, the high-order Fourier modes are discarded. Denoting M, M,, M, the

number of Fourier modes preserved in each direction, 12y, is a complex tensor of size M, x M, x M, X d, X d,.
The full iterative process (Eq. 3.10) involves a succession of L Fourier layers (Tab. A.2). Although the reference

FNO model has L=4 layers, this hyperparameter is optimized alongside the number of Fourier modes M, M,, M.

Projection block ()

After the last Fourier layer FT, the hidden variable v, needs to be projected back to the physical space. The projec-
tion block @ is similar to the uplift P since it contains two dense layers separated by a GELU activation layer. When
predicting the solution of the elastic wave equation, u has three components that correspond to the three directions
of motion (East-West, North-South, vertical). They are obtained by three distinct projection blocks Qg, @y, @z

up = Qp(vr)
uy = Qn(vr) (3.14)
uz = Qz(vr)

3.2.2 U-shaped Neural Operator (UNO)

The U-shaped Neural Operator (U-NO, Rahman et al. 2023) encompasses the Fourier layer into an architecture

inspired from the UNet (Ronneberger et al. 2015). It comprises eight Fourier layers split into an encoder part (four
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Fourier layers) with intermediate outputs of decreasing dimensions, and a decoder part (four Fourier layers) with
increasing dimensions (Fig. 3.5 and Tab. A.3). Skip connections between the encoder and decoder are done via
interpolation and concatenation. This architecture allows a deeper model than the FNO with a smaller number of
parameters (from 58.7 million to 24.6 million) despite having twice more layers.
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Figure 3.5: Representation of the U-NO, with four Fourier layers in the encoding part and four Fourier layers in the
decoding part.

One important feature of the U-NO is its ability to modify the dimensions between vy, and vy1. In the encoder
part, dimensions are reduced by decreasing the number of Fourier modes in each Fourier layer. Although the orig-
inal implementation suggests to increase the number of channels d, alongside the dimension reduction (Rahman
et al. 2023), this was not applied in our work. In the decoder part, dimensions are augmented by increasing the
number of Fourier modes preserved inside each Fourier layer and padding with zeros when necessary. Especially,
this trick allows us to obtain ground motion wavefields ug, uy, uz that have a larger dimension (S;=32, S,=32,
S5¢=320) than the geological input (S;=32, S,=32, 5,=32). This is applied to all neural operators used in this work.

3.2.3 Factorized Fourier Neural Operator (F-FNO)

The number of weights in the Fourier layer (Eq. 3.13) becomes very large when solving 3D PDEs. Indeed, weights
Ry, are of size M, x M, x M, x d, x d,. The factorized Fourier Neural Operator (F-FNO) was introduced by Tran
et al. 2023 to reduce the number of learnable parameters. The general architecture of the F-FNO is similar to the
FNO and is illustrated in Fig. 3.6.

First, the structure of the factorized Fourier (F-Fourier) layer is slightly modified compared to the Fourier layer by
introducing two bias matrices ng and Wf, and applying the residual connection outside the activation function

Vo1 =ve+ MLP (K@(’U@))

(3.15)
MLP(k) =W o (W} k+b}) + b}

where b% and b? are scalar biases. However, the main difference lies in the formulation of the integral operator K.
Instead of computing 3D Fourier transforms as in Eq. 3.12, Fourier coefficients are computed independently along
each dimension

Ky(a)vy = FFT,; " (Ry o - FFTy(vp)) + FFT, ' (Ryy - FFT,(vg)) + FFT; ' (Ry .- FFT.(vp))  (3.16)

This reduces the number of learnable weights to (M, + M, + M. ) x d,, x d,,.. Consequently, a 4-layer F-FNO contains
only 139000 parameters, compared to 58.7 million for the FNO (Tab. A.4).

3.2.4 Multiple-Input Fourier Neural Operator (MIFNO)

The F-FNO predicts the geology-to-ground-motion mapping but does not account for the variability due to the
source. Works like Kong and Rodgers 2023; C. Zou et al. 2023 add the source position as an additional input to
the Neural Operator. This is done by inserting a fifth variable alongside a and the grids z, y, z. This variable is a
cube full of zeros with a single pixel of 1 denoting the source position. We propose an alternative architecture that
takes advantage of the vector representation of the source to include more source parameters.
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Figure 3.6: The F-FNO is made of one uplift block P, a succession of L factorized Fourier layers, and three projection
sub-networks Q g, Qn, @ z. The details of a factorized Fourier layer are given to show the decomposition of the FFT
along each dimension.

Inspired by the MIONet architecture that designs separate branches for each input (Jin et al. 2022), we design
a Neural Operator architecture that encodes the source parameters in a specific source branch. Our Multiple-Input
Fourier Neural Operator (MIFNO) is illustrated in Fig. 3.7.

In our MIFNO, the succession of factorized Fourier layers is split in two parts. From layers 1 to K, factorized
Fourier layers act on the geology as in the original F-FNO. This forms the geology branch. In parallel, the source
branch takes as input the vector of source coordinates x5 concatenated with the source orientation 6. Even though
resolution invariance requires additional conditions (Bartolucci et al. 2023), FNOs can always be technically applied
to inputs having a different resolution than the resolution used during training. This property must be preserved in
the source branch, which is not trivial for convolutional layers whose number of weights depend on the size of the
inputs. To circumvent this issue, the layers in the source branch are defined based on the number of modes used in
the K-th factorized Fourier layer, M,, M,, M, and not the actual size of the inputs.

Several architectures were investigated to design the source branch (not shown) and we found that the best one
was made of a perceptron and two convolutional layers separated by reshaping operations. The source branch can
be decomposed in the following steps:

1. a2-layer perceptron encodes the source characteristics in two dimensions. Its first layer contains 128 neurons

and its second layer 4, M, neurons. The reshaping operation leads to a 3D variable of size 2M, x 2M,, x 1.
2. a 2D CNN (with kernel size of 3) creates the third dimension. A first convolutional layer creates 8 channels and
a second layer creates 2, channels. After reshaping, one gets a 4D variable of size 2M, x 2M, x 2M, x 1.
3. a 3D CNN (kernel size of 3) adds the channel dimension with two convolutional layers.
At the end of the source branch, the ModifyDimensions layer transforms variables into the Fourier space where
Fourier coefficients are padded with 0 if necessary, and then inverse transformed to obtain the same dimension as
the output of the geology branch v, i.e. S; X Sy x S, X d,.

To combine variables from the geology and source branches, we take inspiration from Haghighat et al. 2024 who
propose a 2D eXtended-DeepONet for earthquake localization. Following this idea, vk and vg are summed, sub-
stracted, and multiplied before being concatenated along the channel dimension. This leads to a variable of size
Sy x 5y x S, x 3d, thatis then sent to the remaining factorized Fourier layers, K + 1 to L. The final projection
layers Qg, Qn, Q7 are identical to the F-FNO.

It can also be noted that the MIFNO is exemplified with factorized Fourier layers but the architecture can be
extended to other types of layers. The MIFNO used in this work contains 16 factorized Fourier layers in total (L =
16), including 4 layers in the geology branch (K = 4). The number of channels is fixed to d,, = 16. Its total number of
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Figure 3.7: The MIFNO is made of a geology branch that encodes the geology with factorized Fourier (F-Fourier) layers,
and a source branch that transforms the vector of source parameters into a 4D variable matching the dimensions
of the geology branch output. Outputs of each branch are concatenated after elementary mathematical operations
and the remaining factorized Fourier layers are applied. Uplift P and projection Q g, @ n, @z sub-networks are the
same as in the F-FNO.

parameters amounts to 3.40 million. The initial learning rate is 0.0004 and is halved on plateau, and the loss function
is the relative Mean Absolute Error. The choice of hyperparameters and training strategies were investigated for the
F-FNO (Section 3.3.3) and the best hyperparameters are preserved for the MIFNO. 27 000 samples were used for
training and 3000 for validation. Training was performed on 4 Nvidia A100 GPUs for 200 epochs, which took 29.6 h.

Considerations related to inputs and outputs

It is important to note that the inputs and outputs of our Neural Operators do not live in the same physical space.
In fact, inputs are geological models
a(z,y,z), (z,y,2) € Q.

while outputs are velocity wavefields defined at the surface of the propagation domain 92y, In Eq. 1.2, u denotes
displacement at any point inside the domain while our Neural Operators predict velocity only at the surface. By
abuse of notation, u denotes surface velocity %\8% in the following and the Neural Operators’ outputs are

op

’LLE(I',y,t)
u(z,y,t) = (un(z,y,t) |, (z,y) € Oop,t € [0, TF].
U,Z(flf, yat)

By writing Fourier layers as functions of a hidden non-physical variable £, we interpret this variable £ as transporting
the depth information z contained in the third dimension of a into the temporal dimension ¢ of w. This depth-to-
time conversion is a crucial feature to predict the solution of a 3D time-dependent PDE without the need for a 4D
surrogate model.

Some care should be taken to normalize the inputs and outputs since their variability ranges are significantly
different. Geological models are normalized to a Gaussian distribution, by centering them with respect to the mean
geology and normalizing by four times the geological standard deviation. This normalization is the same as the
one used to train the 3D UNet on geological reconstruction (Section 2.3.1) and yields geological values close to
the interval [—0.5;0.5]. The source coordinates and the source angles are mapped to the |0, 1]3 cube. Velocity
wavefields predicted by the MIFNO are normalized with a scalar (i.e. independent of the sensor coordinates) that
depends only on parameters known beforehand: the S-wave velocity at the source location Vs(xs) and the source
depth z;. The normalization value is ¢ = Vi(x5)\/22 + (A/4)? where A is the length of the domain. The first
term relates to the seismic energy released by an earthquake, which is inversely proportional to the shear modulus
(hence, to the S-wave velocity) at the rupture location (Eq. 2.9). The second term accounts for the amplitude decrease
of seismic waves generated by deep sources since they undergo more geometrical dispersion and diffraction. One
should note that the normalization is applied during training to compute the loss function, but results presented
hereafter have been denormalized.
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3.3 Predictions accuracy

This section illustrates the MIFNO prediction ability. A representative example of MIFNO prediction is discussed in
Section 3.3.1 and predictions on the test dataset are quantitatively assessed in Section 3.3.2. To justify the choice of
the factorized Fourier layers and the MIFNO hyperparameters, the main results obtained for the F-FNO trained with
the HEMEW-3D database are summarized in Section 3.3.3. In Section 3.3.4, the MIFNO is compared with variants of
the F-FNO to ensure that the complexity added by the random source is well managed by the MIFNO architecture.

3.3.1 Prediction illustrations

Figure 3.8 illustrates the MIFNO predictions for a geology in the test dataset (Fig. 3.8a) and a source located at (3.9,
2.6, -6.2 km) with a strike of 298.7°, dip of 85.3°, and rake of 15.4°. The time series show an excellent accuracy on the
three components since the wave arrival times are exactly reproduced: P-waves around 1.6 s and S-waves around
2.7s (Fig. 3.8b). The peaks amplitude is also very similar between the prediction and the simulated ground truth.
The frequency representation confirms the excellent agreement for all frequency ranges (Fig. 3.8c) and the three
components.

At the depicted sensor, the envelope GOF is 8.7 and the phase GOF is 9.5. Since both scores are excellent, they
reflect the visual agreement that can be observed in Fig. 3.8b. The envelope GOF is slightly lower than the phase
GOF due to the presence of small-scale and small-amplitude fluctuations that are challenging to predict with the
MIFNO (visible around 4 s in Fig. 3.8b).

When looking at the spatial evolution of the predictions, Fig. 3.9 shows that it is very accurate for the different
time steps. The wavefront propagates from the source (epicenter denoted with the white star) with the correct
speed since the arrival times are correct for all spatial locations. The source orientation is clearly visible in the first
snapshot and it is correctly reproduced by the MIFNO. It is also remarkable that both P waves and S waves are
well predicted, although their amplitude is very different (maximum East-West amplitude around 2 cm/s for the P
waves and around 20 cm/s for the S waves). One can however notice that the predictions are smoother after the
main wavefront, which reflects that small-amplitude fluctuations are under-estimated. This is visible for instance at
t=2.00s in Fig. 3.9 where the predicted wavefields show less fluctuations than the simulated ground truth.

3.3.2 Metrics analyses

To quantify the predictions accuracy more systematically, the envelope and phase GOFs were computed for samples
in the training and validation datasets. Figure 3.10 shows that the GOF distributions are very similar for training and
validation data. This indicates that the MIFNO is not subject to overfitting. Although the loss evolution during
training shows a stable convergence with a small generalization gap (Fig. 3.11), this does not seem to impact the
prediction accuracy.

The GOFs distributions confirm that the phase accuracy is better than the envelope accuracy (Fig. 3.10 and
Tab. 3.3). Indeed, 80.2% of predictions have an excellent phase GOF (phase GOF larger than 8). Envelope GOFs
are good for 87.3% of predictions (envelope GOF larger than 6), and 27.8% are excellent (envelope GOF larger
than 8). Table 3.3 indicates that the relative Root Mean Square Error (rRMSE) is 33 % on the validation dataset (first
quartile). The relative RMSE is computed between predicted and simulated velocity time series at each sensor.
Errors are then averaged over all sensors and samples. Relative errors on the order of 30 % are common in 3D PDE
predictions, especially when complexity arises from the presence of heterogeneous parameters. The relative RMSE
is complemented by the frequency biases (Section 1.3). Reminding that the frequency bias is by definition larger
than -1, this explains the steep decrease of the high-frequency distribution around -1 in Fig. A.21.

Model rRMSE rFFTIow rFFTmid rFFThigh EG PG
MIFNO 8 layers | 0.34;0.59 | -0.54;-0.09 | -0.63;-0.15 | -0.68;-0.18 | 6.32;7.89 | 8.07;9.17
MIFNO 16 layers | 0.33;0.59 | -0.49;-0.05 | -0.57;-0.09 | -0.62;-0.11 | 6.57;8.08 | 8.20;9.21

Table 3.3: 1st and 3rd quartiles of the metrics computed on 1000 validation samples. rRMSE: relative RMSE (0 is
best), rFFTow: relative frequency bias 0-1Hz (O is best), rFFTyq: relative frequency bias 1-2Hz (0 is best), rFFThigh:
relative frequency bias 2-5Hz (0 is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10 is
best). For frequency biases, negative values indicate underestimation.

65



(b)

Vielocity wavefield at (4950m; 61 50m)
= ground truth == prediction

10

Vi l£rmis)
o

_]u.

11 4

(@

—-10

Vi gl
=

4000
_ 1

- )

£ 3000 £ E o _.V_,__J‘l

L] i by
2000 = =10

o 1 s 3 4 3 [
B Time |53
()
Fourter coefficlents of velocity wavefield at (4950m; 6150m)} = Gmound truth == Predictian
h"r '-"H

10 4

L

g

Eocuner ampitude {cmis)

10-8 . S L o v —— R T T

g 1 2 3 & 5 & ‘B 1 ¥ ¥ a &% & @& I 3 0N &4 § & 7
Fregquency (H2} Frequency |Mz] Freguency [Hzl

Figure 3.8: (a) Geology in the test dataset corresponding to the predictions in panels (b) and (c). The source is located

at (3.9, 2.6, —6.2 km) with a strike of 298.7°, dip of 85.3°, and rake of 15.4°. (b) Velocity time series simulated (black)

and predicted (dashed red line) in the three components: East-West (E), North-South (N), Vertical (Z). (c) For the same
sensor as panel (b), amplitude of the Fourier coefficients of the velocity time series.
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Figure 3.9: East-West component of the simulated (upper row) and predicted (center row) velocity fields for the
geology illustrated in Fig. 3.8 at five time instants. The error between simulation and prediction is given in the lower
row. The white star indicates the epicenter.

Table 3.3 also shows that the MIFNO mainly underestimates the frequency content of signals since frequency
biases are mostly negative. This can be observed in Fig. 3.8b where the small fluctuations at the end of the signal
tend to be ignored in the predictions. Findings on the F-FNO for the HEMEW-3D database with a fixed source cor-
roborate these results (Tab. 3.4). Also, the MIFNO leads to larger underestimations for high-frequency components
(the inter-quartile range is -62% ; -11 % for high-frequency components while it reduces to -49%; -5 % for low
frequencies, Tab. 3.3). This reflects the well-known spectral bias, which states that small-scale (i.e. high-frequency)
features are more difficult to predict than large-scale features (Basri et al. 2020; Rahaman et al. 2019). In addition,
the late small-scale fluctuations also reflect complex physical phenomena due to the diffraction of seismic waves
on scatterers. Indeed, fluctuations are mostly observed in the coda, after the S-wave arrival. Hence, they originate
from the late arrivals of diffracted waves. Late velocity fields are subject to a large inter-sample variability, both
between different sensors and between similar geologies with different locations of scatterers. These factors make
high-frequency predictions very challenging.

Figure 3.12 gives additional insights on these results by representing the minimum and maximum GOF for each
test sample. It shows that for almost all geologies, one can find a sensor that achieves an excellent GOF, and (almost)
all sensors are at least fair. In addition, there is no correlation between the minimum GOF and the maximum GOF.
This means that some samples have similar GOFs for all sensors while others display a large variability between sen-
sors. The inter-sensor variability is not randomly distributed but instead shows a spatial organization that reflects
underlying geological heterogeneities (see an example of the GOF maps in Fig. A.25). As will be discussed in-depth
in Section 3.4.1, smaller coefficients of variation generally lead to better predictions, which is reflected by the color
shades in Fig. 3.12.

One can also notice that the deeper MIFNO with 16 layers gives better predictions than the MIFNO with 8 layers
(Tab. 3.3). Therefore, increasing the complexity of the model is beneficial to improve its accuracy and does not
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Figure 3.10: Distribution of the envelope GOF (left) and phase GOF (right) for each sensor and 1000 samples in the
training (grey area) and validation (blue line) datasets.

lead to overfitting. This improvement is not reflected by the relative RMSE while it is obvious on the other metrics,
emphasizing the need to consider physically-rooted metrics to evaluate the predictions accuracy. It can also be
noted that there is no significant difference between the MIFNO taking as inputs the three angles describing the
source orientation or the corresponding moment tensor (Tab. A.8). Therefore, the MIFNO with angles is used in the
following for more direct interpretations of the results.

3.3.3 FNO, U-NO, and F-FNO comparison

The MIFNO was designed with factorized Fourier layers because our first investigations on a surrogate model pre-
dicting ground motion wavefields from the geology with a fixed source showed that the F-FNO was the most efficient
and accurate architecture. This section recalls the main results obtained in this setting. All models were trained with
the HEMEW-3D database, whose complexity is reduced compared to the HEMEW->-3D database with a random
source (Section 2.2.6). Therefore, errors presented in this section are smaller than the ones discussed above.

The baseline FNO model is able to predict correct surface wavefields, especially in the low-frequency range
(—17% bias, Tab. 3.4). However, Fig. 3.13a shows a large generalization gap between the validation error and the
training error. This may be due to the large number of parameters (58.7 million) that requires a huge training
database to avoid overfitting.

HEMEW-3D database with a fixed source

Model # parameters rRMSE rFFTiow rFFTmid rFFThigh
FNO 58.7m 0.23+0.088 | -0.17 +0.18 | -0.30 £ 0.24 | -0.44 4+ 0.30
U-NO 24.6m 0.224+0.088 | -0.16 = 0.16 | -0.28 £0.22 | -0.44 4+ 0.28
F-FNO 4 layers 139k 0.234+0.081 | -0.29 +£0.16 | -0.42 +0.21 | -0.55 4+ 0.26
F-FNO 8 layers 246k 0.21 +0.083 | -0.15+0.14 | -0.26 £ 0.19 | -0.37 +0.26
F-FNO 28 layers 782k 0.17 + 0.081 | -0.08 + 0.10 | -0.14 += 0.15 | -0.23 4 0.22

Table 3.4: Mean and standard deviation of relative biases for 1000 validation samples. For frequency biases rFFT o,
rFFTmig. and rFFThigh, negative values indicate underestimation. For the number of parameters, "m" stands for
million and "k" for thousand.

Despite the U-NO having been proposed to improve the performances of the FNO, our results show little dif-
ferences between the two models. The medium frequency bias is =28 % for the U-NO compared to -30 % for the
FNO. One can also notice on Fig. 3.13b that the generalization gap is smaller for the U-NO but still significant. The
generalization gap may not be entirely related to the size of the training database. Indeed, the frequency biases are
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almost the same with 22000 and 27 000 training samples (Fig. A.8). Though it is still possible that a database one
order of magnitude larger than the one used in this study could drastically impact the results.

Additionally, we find that all skip connections are not necessary in the U-NO since the lowest errors are obtained
for a model with only the deepest skip connection (Fig. A.9). The improvements obtained by removing the upper
skip connections is especially visible on the high frequency biases. These findings may be explainable by the fact
that inputs and outputs are not the same physical variables. Outputs of the first Fourier layer entering the upper
skip connection are more similar to geological models while they get concatenated with variables being transformed
into surface wavefields.

The F-FNO has the smallest number of parameters (from 139 000 with 4 layers to 782 000 with 28 layers) but its
8-layer version beats the FNO and the U-NO on all metrics reported in Tab. 3.4. Improvements are especially visible
on the high-frequency bias that is reduced from —-44 % to =37 %. One considerable difference between the FNO and
the F-FNO also stands in the closing of the generalization gap. Independently from the number of factorized Fourier
layers used in the model, the validation loss always closely follows the training loss (Fig. 3.13c).

With the F-FNO, a large number of those parameters were tested to highlight the most influential ones. All details
can be found in Appendix A.3.2 and A.3.3; and the main outcomes are summarized below. The accuracy of each
F-FNO variant is assessed with the frequency biases in low, medium, and high frequency ranges, on a subset of 1000
training and 1000 validation samples.

The two hyperparameters that have the most influence on the predictions' accuracy are the number of channels
(dy) and the number of layers. At least 12 channels should be considered and there is no improvement when
increasing from 28 to 32 channels (Fig. 3.14a). In addition, choosing a deeper model is beneficial since the errors
shrink between 4 and 16 layers and continue to reduce with more than 16 layers (Fig. 3.14b). Concerning the number
of Fourier modes used in each layer, small improvements are also obtained when preserving more Fourier modes
(Fig. A.10). However, effects are less pronounced for Fourier modes than for the number of layers or the number
of channels. Especially, we found that increasing the number of temporal modes does not reduce the errors on the
high-frequency components of the signal.

The training strategy was investigated in terms of the loss function, the size of the training database, the batch
size, and the learning rate. For the loss function, the best results were obtained with the MAE rather than a combi-
nation of MAE and RMSE (Fig. A.12). Also, improvements were moderate when increasing the number of samples,
which suggests that our database with 27000 training samples is well-suited for this model (Fig. A.13). A learning
rate of 6 x 10™* was optimal to reach the lowest errors and the strategy to halve the learning rate on plateau was
better than two alternative strategies (One cycle and cosine annealing with warm restarts, A.14).
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Figure 3.13: Evolution of the training (solid lines) and validation loss (dashed lines) for the three FNO variants (FNO,
U-NO, F-FNO). Each panel reports the reference loss with the FNO (black). In the panels (a) and (b), the shaded lines
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3.3.4 Comparing the MIFNO with baseline models

Due to the difficulty of finding existing implementations of models for 3D and vector inputs, the MIFNO is compared
to F-FNO models with less flexibility. This is meant to ensure that the additional complexity induced by the source
branch does not deteriorate the predictions. To do so, we use three different databases that contain the same
geological models but different surface velocity wavefields depending on the source parametrization:

1. in the HEMEW-3D database, both the source position and orientation are fixed. The source is located in the
middle of the bottom layer: xs=4.8 km, ys=4.8 km, z3=—8.4 km and its orientation is fixed to strike=48°, dip=45°,
rake=88°. This database contains N¢yain=27 000 training, N,3=3000 validation and Ntest=1000 test samples.

2. inanintermediate database, the source is located randomly inside the bottom layer, i.e. x5 ~ U([1200; 8100m)),
ys ~ U([1200;8100 m]), zs ~ U([—9000; —8100 m]) and its orientation is fixed to the same value as the
HEMEW-3D database. This database contains Nrajn=20 000 training, N,5=2000 validation and Nest=1000 test
samples.

3. the HEMEW®-3D database described in Section 2.2 contains sources located randomly anywhere in the do-
main and any source orientation. It contains Nirain=27 000 training, N,3=3000 validation and Ntest=1000 test
samples.
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Figure 3.14: Evolution of the relative frequency bias as a function of the number of channels (d,, panel a) and
the number of layers (panel b). The mean frequency bias on training samples is shown with filled markers while
unfilled markers refer to validation samples. Frequency biases are computed for low frequency (0-1Hz, light grey),
medium frequency (1-2Hz, dark grey), and high frequency (2-5Hz, black). Note that the y-axis gives the opposite of
the frequency biases, so that the best models have the lowest amplitude of frequency biases. The red area shows
the reference model with d,=16.

First, let us consider the prediction accuracy with respect to the geological properties. The baseline model is
the 16-layer F-FNO described in Section 3.2.3. To match the number of parameters of the MIFNO, the F-FNO was
designed with d,,=16 channels in layers 1 to 4, and d,=48 channels in layers 5 to 16. The F-FNO was trained on the
first database HEMEW-3D with fixed source location and orientation. The MIFNO was trained as described above
on the HEMEW?®-3D database with random source location and orientation. Therefore, it should be noted that the
training task of the MIFNO is much more complex than the F-FNO task.
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Figure 3.15: For 1000 samples in the HEMEW-3D test dataset (fixed position and fixed orientation) and each sensor,
the frequency bias of the MIFNO (vertical axis) is shown against the F-FNO frequency bias (horizontal axis). Each
subplot corresponds to a different frequency bias, 0-1Hz (left), 1-2Hz (middle), 2-5Hz (right). Optimal predictions
correspond to a frequency bias of 0.

At inference stage, both the F-FNO and the MIFNO were used to predict surface velocity wavefields for 1000
test geologies with a fixed source corresponding to the reference source in the HEMEW-3D database. Figure 3.15
compares the F-FNO predictions with the MIFNO predictions for each sensor and each sample. One can firstly
notice that points are widespread on both sides of the diagonal, meaning that the MIFNO or the F-FNO can give
better predictions depending on the situation. However, points are more densely distributed in the lower right
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triangle of the graph, close to the diagonal (Fig. 3.15). This indicates that the F-FNO is in average more accurate than
the F-FNO when predicting only solutions with a fixed source.

However, the difference between the F-FNO and the MIFNO is around 0.8 GOF units, which remains acceptable
knowing the extended complexity of the MIFNO task (Tab. A.9). Figure A.22 illustrates velocity time series predicted
by the F-FNO and the MIFNO. It shows that the MIFNO predictions are already reasonable while the F-FNO locally
improves the accuracy.

For the next comparison, we focus on the influence of the source location. To do so, we designed a F-FNO taking
as input the geological parameters and a binary encoding of the source position, i.e. a cube full of zeros with a single
1 indicating the position of the source. The MIFNO was trained with only the source coordinates given as inputs to
the source branch. In this experiment, both the F-FNO and the MIFNO were trained on the second database (random
source location and fixed orientation).

Dataset with a random source position and fixed source orientation

Model | rRMSE FFT ow (FFTmid rFFThigh EG PG
F-FNO | 0.11;0.20 | -0.22;0.06 | -0.29;0.05 | -0.34; 0.05 | 7.49;8.63 | 8.74, 9.42
MIFNO | 0.12;0.21 | -0.23;0.05 | -0.30;0.04 | -0.36;0.04 | 7.36;8.53 | 8.64;9.36

Table 3.5: 1st and 3rd quartiles of the metrics computed on 1000 validation samples. rRMSE: relative RMSE (0 is
best), rFFTjow: relative frequency bias 0-1Hz (O is best), rFFTmq: relative frequency bias 1-2Hz (0 is best), rFFThigh:
relative frequency bias 2-5Hz (0 is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10
is best). For frequency biases, negative values indicate underestimation. Both models contain 16 layers and were
trained with 20 000 samples for 300 epochs.

When both models have 8 layers, the MIFNO predictions are slightly better than the F-FNO (Tab. A.10). With 16
layers, both models give a similar accuracy (second digit fluctuations in Tab. 3.5 are within the variability of the model
due to a different random initialization). Phase GOFs are excellent for both models and the envelope GOFs are close
to excellent (Tab. 3.5). Overall, these results show that the source branch architecture in the MIFNO preserves the
expressivity of the F-FNO while providing the flexibility to add more source parameters.

3.4 Towards explainability of the prediction error

Although a surrogate model can never be expected to predict perfect results, it is desirable to understand the
situations when it leads to the best accuracy, hence when one can trust its predictions the most. Section 3.4.1
investigates the influence of geological heterogeneities, in terms of the coefficients of variation and correlation
length. Results in this section have been obtained with the F-FNO trained on the HEMEW-3D dataset with a fixed
source. They can be extended to the MIFNO by decoupling the influence of the source, which is why we choose to
present first the F-FNO results. Then, Section 3.4.2 explores the impact of the source position and source orientation
on the prediction accuracy.

3.4.1

In this section, predictions are done with the F-FNO on the 1000 consistent geological models to analyse the rela-
tionship between the coefficient of variation of heterogeneities in geological models, their correlation length, and
the prediction error. In the consistent geological models, all layers have the same coefficient of variation and the
same correlation length to facilitate the interpretation. One can firstly observe in Fig. 3.16 that the prediction errors
increase when coefficients of variation are larger. Additionally, the slope of the prediction error is larger when the
correlation length is small. This means that there is an interaction between coefficients of variation and correla-
tion lengths. Thus, geological models with both large coefficients of variation and small correlation lengths lead
to the largest errors. Indeed, it is known that geological models with high coefficients of variation induce stronger
impedance contrasts that disperse the incident wave. The subsequent multi-scattering effect is more pronounced
when the coefficient of variation increases. Also, the correlation length impacts the dispersion and diffraction of
incident waves at different wavelengths.

These findings reflect previous remarks on the spectral bias inherent to neural networks, which implies that
high-frequency features are less well predicted than lower frequencies. It can be emphasized that these prediction

Influence of the geological heterogeneities
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Figure 3.16: For 1000 consistent geological models in the test database, the high-frequency relative frequency bias is
computed for each spatial point where mean (dots) and standard deviation (error bars) are extracted. Each geolog-
ical model is characterized by its coefficient of variation (x-axis). Velocity models are stratified by their correlation
length.

errors are not due to some imbalance in the training dataset. Indeed, coefficients of variation of geological models
follow a normal distribution of mean 0.2. This implies that there are statistically as many geological models with
coefficients of variation around 0.1 than there are around 0.3. Although it is very clear from Fig. 3.16 that frequency
biases are significantly larger for coefficients of variation around 0.3.

For the MIFNO, the interpretation is challenging since more parameters influence the predictions accuracy but
Fig. 3.12 suggests that geologies with the largest coefficients of variation lead to lower GOFs.

3.4.2 Influence of the source parameters

In this section, we highlight the influence of the source parameters on the MIFNO predictions and on the error. For a
given geology, Figure 3.17a compares the predictions and the ground truth for three different positions of the source
(with the same orientation). One can firstly observe that the predicted wavefields are very similar to the ground truth
for all source positions. Especially, their spatial location closely follows the source position. This confirms that the
source position encoding in the source branch is accurate. Figure 3.17a also illustrates the variability of surface
wavefields that can be obtained by moving the source in a heterogeneous geology. Indeed, the same geology was
used for all three snapshots and the source orientation is fixed but the surface wavefields are distorted differently
due to the heterogeneities encountered between the source and the surface.

Next, we focus on the source orientation while fixing the position of the source. A geology with low hetero-
geneities is chosen to emphasize the source orientation. Three sets of (strike, dip, rake) angles are examined in
Fig. 3.17b. The selected time is just after the P-wave arrival time. For all orientations, the signs of the predicted
ground motion closely match the ground truth, meaning that the MIFNO can predict the influence of the source
orientation. As already mentioned, a slight amplitude underestimation is visible in some regions but this is not due
to the source orientation.

For more systematic analyses, the 1-2 Hz frequency bias is evaluated on 1000 samples with various geologies,
source locations, and source orientations. Figure 3.18 shows the frequency bias against the source coordinates.
Similar errors are obtained for all source longitudes and latitudes, meaning that the prediction accuracy is indepen-
dent from the epicenter location. There is a slightly positive correlation between the source depth and the frequency
bias but the inter-sample variability is of the same order. Figure 3.18 suggests that the underestimation of frequency
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Figure 3.17: Comparison of the MIFNO predictions (lower rows) with the simulated ground truth (upper rows) for a
given geology and time. (a) the source position changes (indicated by the white star) but the orientation remains
constant. (b) the source position is fixed but the orientation changes and is indicated with the (strike, dip, rake)
angles.

content is greater when the source is deeper while errors are smaller and overestimation is more frequent for shal-
low sources. Since both the phase and envelope GOFs indicate better results for shallow sources (Fig. A.24), this
effect is likely due to the increased complexity of the wavefields generated by a long propagation of waves. Indeed,
seismic waves originating from deep sources statistically encounter more heterogeneities on their path, which leads
to diffraction and dispersion and hence, perturbs the surface wavefields. Therefore, it is generally more complex to
predict accurate wavefields generated by deep sources.

Figure 3.19 corroborates this interpretation since, for most predictions, the GOF is inversely correlated with the
epicentral distance, defined as the horizontal distance between the source and the sensor. This effect is especially
pronounced for the envelope GOF since we have already commented that longer propagation paths lead to more
complex ground motion time series, with small fluctuations. In conclusion, both the source depth and the epicentral
distance are pertinent explanatory variables to understand the prediction accuracy. On the contrary, it can be
observed that the source orientation parameters (strike, dip, and rake angles) have no effect on the prediction
accuracy (Fig. A.23). This confirms that the MIFNO produces equally accurate predictions for all types of sources.

3.4.3 Relationship with the energy integral

We have already mentioned that wavefields with small-scale fluctuations are predicted less accurately. To quantify

this phenomenon, let us introduce the energy integral I E' at sensor & and the normalized energy integral I E with
respect to all surface sensors of a given realization

T 2 2 2
IE(:B):/ up(@,!) +”N(§’t) tuz(@,0)” (3.17)
0

I1E(x)

IE(x) =
(m) HlanleaQtOp IE(ZBI)

(3.18)

Figure 3.20 displays the envelope and phase GOF as a function of the energy integral. There is a significant
positive correlation between the GOF and the energy integral, meaning that the most energetic signals lead to
the best predictions. The correlation is stronger for the envelope GOF than the phase GOF. This reflects previous
observations that the envelope GOF is hindered by errors on small-amplitude fluctuations. From an engineering
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Figure 3.18: For 1000 samples, the 1-2 Hz frequency bias is shown against the source position (x, y, z). Negative
(resp. positive) values indicate underestimation (resp. overestimation) of the frequency content.
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Figure 3.19: Envelope GOF and phase GOF represented for each sensor and 1000 test samples as a function of the
epicentral distance. Colors indicate the density of points.

perspective, this association is important as it means that the most damaging ground motions (i.e. with the highest
energy) are generally well predicted.

3.5 Generalizability

Neural networks and neural operators are not meant to extrapolate data beyond the training distribution. However,
when evaluating predictions on real data, one cannot guarantee that test data are perfectly in-distribution. Although
predictions are not expected to be excellent in this situation, it is crucial that they remain reasonable. For the elastic
wave equation, this especially means that predicted amplitudes should be of the right order of magnitude and wave
arrival times should be close to the reference.

Generalization was firstly assessed on the F-FNO by adding white noise to the geological models (Appendix A.3.4).
This shows that predictions are stable and the F-FNO acts as a low-pass filter to remove the influence of non-
coherent geological fluctuations. Then, the MIFNO generalization ability is assessed on out-of-distribution sources
(Section 3.5.1) and geologies with a real overthrust geological model (Section 3.5.2). We also test the MIFNO ability
to perform zero-shot super resolution by increasing the spatial resolution of the prediction (Section 3.5.3).
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Figure 3.20: Envelope GOF and phase GOF represented for each sensor and 1000 test samples as a function of the
normalized energy integral I E' at each sensor. Colors indicate the density of points.

3.5.1 Generalization to out-of-distribution sources

In the HEMEW®-3D database, the propagation domain extends from 0km to 9.6 km and the sources are located
between 1.2 km and 8.4 km. However, since the source location is provided as a vector of coordinates, the MIFNO is
not constrained to sources located inside the domain. Thus, in this section, we explore its ability to predict surface
ground motion originating from a source outside the training domain.

To simulate the reference ground motion, we create 1000 new geologies that are twice larger than the original
propagation domains and have the same depth. They are all heterogeneous geologies with parameters following the
same distributions as the HEMEW®>-3D database (Tab. 2.2). In these large geologies, sources are located randomly
within [—3.6km; 13.2km] and their orientation is also randomly chosen. The reference ground motion is acquired
only at the surface of the original propagation domains, i.e. [0km; 9.6km].
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Figure 3.21: 25-th percentile of envelope GOF (left) and phase GOF (right) for 1000 samples where the source is
located outside the training domain (dashed square) or even outside the physical domain (dotted square). For
reference, 1000 samples with a source inside the training domain are shown.

Figure 3.21 shows that the MIFNO maintains very good predictions when the source is located outside the train-
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ing domain, both for the envelope GOF and the phase GOF. When the source remains inside the propagation domain
(dotted square in Fig. 3.21), the inter-quartile range is 6.24-7.70 for the envelope GOF and 7.41-8.77 for the phase
GOF. These good to excellent results are satisfying for out-of-distribution predictions since they are not too far from
the reference results on in-distribution data (Tab. 3.3). When the source locations are farther from the training do-
main, predictions worsen. This can be seen in Fig. 3.21 for sources out of the training domain and it is perfectly
expected since neural operators are not designed for severe extrapolation tasks.

3.5.2 Generalization to out-of-distribution geologies

To test the generalization ability of the MIFNO to out-of-distribution geologies, a 3D overthrust model was adapted
to the size of our geological domain (Aminzadeh et al. 1997). This model is a 3D extension of the well-used Marmousi
model. It shows a succession of thin layers with contrasting velocities and several folds. It is downscaled to a spatial
resolution of 300 m to match the resolution of the HEMEW®-3D database (Fig. 3.22a). The source is located at (1.2 km,
4.8 km, —9.0 km) with strike = 48°, dip = 45°, rake = 88°.

Figure 3.22 shows that the predicted wavefronts are close to the simulations, in all parts of the domain. In par-
ticular, the wave arrival times are accurately predicted and the influence of the source orientation is well preserved
since the phases correspond to the reference. The amplitude of the main fluctuations is also accurate. The P wave
peaks tend to be overestimated (see t=2.50s in Fig. 3.22c) but they have a small amplitude on the East-West com-
ponent. The focus is instead on the S waves, for which the amplitudes agree well with the reference simulation
(Fig. A.26a).

The envelope GOFs are good for a large majority of sensors and phase GOFs are very good to excellent (Fig. 3.22b).
The GOF distributions are concentrated around the mean of the GOFs obtained on the HEMEW>-3D database,
thereby showing the generalization ability of the MIFNO to real complex geologies. Figure 3.22b also illustrates
the large GOF variability between sensors for the same realization (around 2 GOF units). This variability is similar to
the HEMEW®>-3D database as shown by the difference between the worst and best sensor in Fig. 3.12. Differences
are not randomly distributed but instead follow a coherent spatial organization that is related to the geological
heterogeneities. Figure A.25 indeed shows that areas with a GOF lower than 6 are rare and most of the sensors
achieved at least a good GOF.

One can however notice the absence of late fluctuations in the predictions (mainly visible for low amplitudes
around t=3s). This was expected from our previous analyses since these ground motion fluctuations are created
by the multiple wave reflections and refractions on the thin geological layers and they are difficult to predict. These
differences are exacerbated when the simulations are run with a high resolution geological model (50 m) instead
of using the same resolution as the prediction (300 m). Figure A.26 indeed shows that ground motions obtained
through a high-resolution geology contain more complex small-scale patterns.

3.5.3 Generalization to higher resolution

Although zero-shot super resolution can always be technically performed with FNOs, FNOs are not invariant with re-
spect to the resolution in the general framework (Bartolucci et al. 2023). This means that high-resolution predictions
may be less accurate than predictions at the training resolution. Since there is no theoretical result for FNOs includ-
ing source and PDE parameter, we investigate zero-shot super resolution experimentally with the MIFNO. While the
MIFNO was trained with inputs of spatial resolution of 32 x 32 x 32, geologies are interpolated to 64 x 64 x 32 to
obtain high-resolution predictions. The vertical dimension is preserved to maintain the same depth-to-time con-
version. Since the source is given with absolute coordinates, there is no need to modify the source branch when
modifying the resolution.

Figure 3.23 shows that it is possible to obtain accurate velocity wavefields with a resolution of 64 that has not
been seen during training. The wavefronts are better defined with the increased resolution, which allows to cap-
ture peaks more accurately in this example (see snapshots at t=1.40s in Fig. 3.23 for instance). However, some
discrepancies are visible at higher resolution, especially on the boundaries. These artefacts can be explained by the
fact that high-resolution predictions are in advance at the edge of the domain, which induces a phase difference
between the prediction and the reference (Fig. A.27).
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Figure 3.22: (a) Overthrust geology downscaled to 300 m. (b) Distribution of the envelope and phase GOF for the
HEMEW?>-3D database (grey, darker colors indicate higher points density) and for each surface sensor predicted
with the overthrust geology (green). (c) East-West component of the simulated (upper row) and predicted (middle
row) velocity fields at five time instants. The white star denotes the position of the source (depth=-9 km). The error
between simulation and prediction is given in the lower row.
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Figure 3.23: East-West component of the velocity wavefield at five time instants. first row: simulation with 32 x 32
sensors. second row: prediction with 32 x 32 sensors. third row: simulation with 64 x 64 sensors. fourth row:
prediction with 64 x 64 sensors. The white star denotes the position of the source (depth=-1.3 km).
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3.6 Conclusion

We proposed an implementation of the factorized Fourier Neural Operator (F-FNO) that predicts surface ground mo-
tion generated in 3D geologies thanks to a depth-to-time conversion. By focusing on the surface of the domain, i.e.
the only location where observations are commonly available, we can provide the solution of a 3D time-dependent
PDE without a 4D surrogate model. The factorized Fourier layer is efficient for 3D PDEs as it significantly reduces
the number of parameters compared to the baseline FNO. In particular, this allows to obtain a deep and wide F-FNO
that does not lead to overfitting, contrary to the FNO that suffers from a large number of parameters.

Building on these findings, we introduced a Multiple-Input Fourier Neural Operator (MIFNO) that takes as input
a 3D geological domain and a vector describing the source position and orientation. The structured geology is
processed with factorized Fourier layers, and the source parameters are transformed via convolutional layers while
maintaining resolution invariance properties. The MIFNO was trained on 30000 earthquake simulations from the
HEMEW?>-3D database covering a large variety of heterogeneous geological models, source positions, and source
orientations. It predicts 3-component surface ground motion between 0s and 6.4 s for frequencies up to 5Hz.

The MIFNO performs on par with the reference F-FNO model, as was verified by restraining the MIFNO training
task to a dataset with i) a fixed source and ii) a randomly located source with a fixed orientation. This shows that the
flexibility offered by our proposed architecture preserves the accuracy of the F-FNO.

MIFNO predictions are considered good to excellent for most sensors, following the common understanding of
Goodness-Of-Fit (GOF) criteria. GOFs are better for the phase than for the envelope, which indicates that the MIFNO
is well suited to predict wave arrival times and the spatial propagation of wavefronts. With 87 % of predictions
having a good envelope GOF, the main peaks are correctly predicted, which is crucial for engineering applications.
Complex wave propagation phenomena due to heterogeneities yield small-scale fluctuations with small amplitude
that are difficult to predict accurately and negatively impact the envelope GOF. Indeed, large coefficients of variation
and small correlation lengths lead to larger prediction errors.

These difficulties are exacerbated by the design choices of the HEMEWS>-3D database that purposely contains
geologies with strong heterogeneities (mean coefficient of variation of 0.2). However, such large coefficients of
variations are rarely found in reality for large correlation lengths. They are included in the HEMEW?>-3D database to
enhance its variability in a Scientific Machine Learning perspective. Therefore, predictions on common 1D geological
models augmented by moderate heterogeneities will fall in the most accurate range of the MIFNO predictions.

We found that the MIFNO tends to underestimate the frequency content of the ground motion fluctuations.
Geological heterogeneities lead to the dispersion of wave energy over time. Since the low-frequency components
are affected only by the equivalent mean geological field, they are not influenced by small heterogeneities. There-
fore, the influence of dispersion is visible only on the high-frequency components. Since dispersed ground motion
wavefields are more challenging to predict, this explains that the prediction errors are larger for high frequencies.
However, GOF scores are positively associated with the signal energy, meaning that the most energetic ground
motions are generally well predicted, which is crucial for engineering applications.

Using a more complex MIFNO (i.e. with more layers and more channels) is a privileged approach to increase the
accuracy, as illustrated by the difference between the 8-layer and 16-layer MIFNO. Investigations on the F-FNO also
showed that this architecture scales well when the number of parameters increases and we hypothesize that similar
results hold true for the MIFNO. As a consequence, provided that one can obtain enough training data and bear the
cost of training deeper models, the MIFNO would become more accurate.

The MIFNO is also able to generalize well to different out-of-distribution data. The source was located out of
the training domain with only a moderate degradation of the accuracy. Although it could also be placed outside
the propagation domain, this large distribution shift worsened the predictions. In addition, the MIFNO can be
applied to geologies that have a different resolution than the training resolution. Although there is no guarantee
that the accuracy will systematically be maintained at higher resolutions, the illustrated example showed that finer
predictions improve the predictions of peaks amplitudes. These results show the robustness of the MIFNO when
applied on test data, which is crucial to move towards real-case applications.

Generalization to geologies that are far from the training database is challenging but the MIFNO predicts accu-
rate ground motion for an overthrust geology with thin folded layers. The GOF distributions with the overthrust
geology follow the distributions on the HEMEW>-3D database. These good to excellent GOFs illustrate the good
generalization ability of the MIFNO for real complex geologies. However, the thin layers in the overthrust geology
create dispersed wavefields, which are challenging to predict with a generic surrogate model.

When aiming for more accurate predictions in complex settings, transfer learning should be used to specialize
the MIFNO on a smaller database tailored to the region under study. Once duly trained, the MIFNO produces quasi
real-time evaluations of surface ground motion, thereby paving the way for 3D uncertainty quantification analysis,
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design optimization, and inverse problems that are beyond reach with traditional methods.

Indeed, the MIFNO provides 6.4 s of ground motion in around 10 ms (with one GPU) while numerical simulations
take around 1day (1 CPU equivalent). The energy consumption of the MIFNO should be distinguished between
training and inference. The training phase amounts to 22 kWh and thanks to the speed of the MIFNO, the inference
phase represents only 52 Wh to obtain Ny;c = 10° predictions (Tab. 3.6).

Task Number of realizations | Energy consumption (MWh)
MIFNO training Nipain = 30000 0.022
MIFNO prediction Nyo = 10° 5.2 x 107

Table 3.6: Energy consumption of the MIFNO training and prediction. The energy consumption of 1 GPU is estimated
to 187 Wh. Training the MIFNO on 4 A100 GPUs lasts for 29.6 h. One MIFNO prediction takes around 10ms on 1

A100 GPU.
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Chapter 4

Application to the Le Teil earthquake:
transfer learning and uncertainty
guantification

Seismic hazard analyses are subject to many sources of uncertainty, ranging from fault rupture to site effects and
geological properties, not withstanding uncertainties in the models providing ground motions. To provide reliable
estimates of seismic hazard, it is crucial to study how these uncertainties propagate to ground motion intensity.
Seismic hazard analysis can be classified in two broad categories, namely deterministic (or scenario-based) seismic
hazard analysis and Probabilistic Seismic Hazard Analysis (PSHA). Although formalizing a full PSHA framework is out
of the scope of this work, we explore how our surrogate model can be used in some of the PSHA components.

Seismic hazard aims at determining the rate of exceedance of an Intensity Measure (IM), i.e. A(IM > im)
where im is a user-defined threshold. IMs can be seen as quantities of interest computed from ground motion u
through IM = h(u), where h is a deterministic function. Common IMs are the Peak Ground Velocity (PGV) and
Pseudo-Spectral Acceleration (PSA) at specific periods. PSHA computes the rate of exceedance as

AIM > im) = Z P(IM > im|rup, m)A(rup) (4.1)
rupER

where R is the set of possible fault ruptures generating earthquakes in the region under study, P(IM > im/|rup, m)
is the probability that the IM exceeds the threshold im when the earthquake is generated by rupture rup and prop-
agates with model parameters m (m includes the geological properties, the ground motion model parameters, and
the site condition), and A(rup) is the rate of occurrence of rupture rup within a specific time window.

We choose as a study region the surroundings of the Le Teil earthquake. Seismological and geological investiga-
tions provide reference geological models for this region and we adapt the 1D model of Causse et al. 2021 to the
design of the HEMEW?>-3D database. This model is complemented by 3D geological heterogeneities to provide a
prior distribution of geological properties p,(a). The fault ruptures are described by the possible source locations
on the La Rouviére fault (Vallage et al. 2021) and the source orientations 8, compatible with the seismological con-
text (Delouis et al. 2021). Seismotectonics knowledge therefore yields a prior distribution of the source properties
ps(xs, O5) (Section 4.1).

For any geological model a ~ p, and any source (&, 0;) ~ ps, our surrogate model G trained with data D
gives an estimation of ground motion at location x

u(z) = Gy(a, s, 05|D)(x) (4.2)
One non-negligible source of uncertainty is the prediction error of the surrogate model, namely e(x) := u(x) — u(x)
where w is assumed to be the error-free ground motion time series u = G(a, xs, 0;). In reality, u suffers from

measurements error if acquired from recordings, or from numerical errors if obtained with physics-based simula-
tions. As a first approximation, these uncertainties are neglected in this work.

Chapter 3 showed that the MIFNO is an accurate surrogate model of ground motion propagation but prediction
errors can be significant in some situations. One efficient method to reduce the prediction error of deep learning-
based surrogate models is to train them on data that are specific to the target task. In our framework, this pertains
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to geological models and source properties specific to the Le Teil earthquake. Transfer learning is widely used
in the machine learning community to transfer knowledge i) from a specific task to a different task, or ii) from a
generic task to a specific task (Quifionero-Candela 2009; Pan and Q. Yang 2010; Weiss et al. 2016). This work takes
advantage of the latter framework. For a regression problem like the one we are concerned about, a task should be
understood as the prediction of an output u given inputs (a, s, 65) with training data D = {a', x, 6, UZ}lgigN-
Then, transfer learning means that a surrogate model G (-|D;) trained on the generic dataset D; will be further
trained (or fine-tuned) on the specific dataset Ds. Depending on the distributional shift between D; and D», and the
transfer learning strategies, the fine-tuned surrogate model should be (significantly) more accurate than the generic
one.

In the following, Section 4.1 details the ground motion databases designed for the Le Teil earthquake and our
transfer learning methodology for the MIFNO. Section 4.2 then presents the ground motion predictions and illus-
trates the benefits of transfer learning to improve the MIFNO accuracy. Although the MIFNO was trained only with
point-wise sources, we show that it predicts the ground motion generated by a kinematic fault rupture with excel-
lent accuracy. With this improved surrogate model, we conduct uncertainty analyses on several intensity measures
(Section 4.3). The influence of geological heterogeneities on PGV is firstly assessed (Sections 4.3.1). This work
was conducted with the F-FNO fine-tuned with a fixed source and was published as a conference paper for the
2023 TINCE conference (Technological Innovations in Nuclear Civil Engineering) with the associated special issue F.
Lehmann et al. (n.d.). “Quantifying Uncertainties in Seismic Hazard Analysis with a Fourier Neural Operator”. In:
European Journal of Environmental Civil Engineering (under review) ()

Excepting this Section 4.3.1, all the other results were obtained with the MIFNO. We focus on the PSA and per-
form sensitivity analyses (Section 4.3.2) to highlight the influence of several parameters. We show that our surrogate
model allows to constrain the source properties in the presence of uncertainties, based on PSA observations (Sec-
tion 4.3.3). We finally take advantage of the speed of the MIFNO predictions to estimate confidence intervals of the
high PSA percentiles (Section 4.3.4).

4.1 Transfer learning: data and methods

4.1.1 Le Teil geological database

Seismological studies based on inversion methods provide a reference 1D model of Vp and Vs in the vicinity of the
Le Teil earthquake (Causse et al. 2021). After some slight adaptations to the design of the HEMEW>-3D database, the
1D model contains six horizontal layers and the S-wave velocities described in Table 4.1. The ratio of P- and S-waves
velocities (Vp and Vs ) is assumed constant and equal to 1.7 Density and attenuation factors are computed from Vp
and Vs (equation 2.7). This model serves as the reference geology @ in our Le Teil database.
A set of 4000 heterogeneous geologies was then derived by superposing log-normal random fields  to the
reference geology
a(z) =a(x) - (z), withd(x) ~ LN(0, kot 0,0, (T, 2")) (4.3)

where k is the von Karman correlation kernel depending on the coefficient of variation ¢ and correlation lengths
Uy, €y, L, (Section 2.2.2). It should be noted that random fields are sampled independently inside each of the five
upper layers. To enable an easier interpretation of the results, parameters o, ¢, ¢, £, are the same in all layers and

they follow the same distribution as the HEMEW?-3D database

Do = |N(0'27 0.1)]

. =U{L.5,3,4.5,6k
pe. = U({ m}) s

=U({1.5,3,4.5,6 km})
=U({1.5,3,4.5,6 km})
The prior distribution on geologies can then be expressed as
Pa = P8,0,00 by Lz = Ps|oty byl Po Pty " Pty " Pe. (4.5)

The Le Teil database finally contains 4000 heterogeneous geologies that are all plausible variations of the reference
geology. Figure 4.1 illustrates the vertical distribution of Vs .
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Figure 4.1: Vs distribution in the Le Teil database. For Table 4.1: Reference 1D geological model for the LeTeil
each of the 32 vertical levels, the mean and percentiles are region. Each layer from top to bottom is described by
computed over all horizontal points and samples (shaded its thickness, S-wave velocity (Vs ), P-wave velocity (Vp ),
areas). Blue lines show some individual vertical profiles. and density p (adapted from (Smerzini et al. 2023)).

4.1.2 Le Teil source database

Several studies estimated the source parameters of the Le Teil earthquake, both in the form of a fault plane and an
equivalent point-source. In our Le Teil database, we choose the source locations close to the fault plane obtained by
Vallage et al. 2021. The fault is 7 km-wide, 4 km-high and extends between =780 m and -4210 m. Since the source
must be located close to the fault plane, we firstly define the three normal vectors that characterize the fault plane

o along strike, B along dip and 7 normal to the fault plane (Fig. 4.2). The source location is then sampled with a
Latin Hypercube Sampling (LHS) in the (3, F, ﬁ)) frame as three independent variables

Saq ~ U([0, 7 km])
sg ~ U(]0,4 km]) (4.6)
$n ~ U([—0.1,0.1 km])

The absolute source position is then obtained as
Ts
(%):%3+%?+%ﬁ 4.7)
Zs

Each point source is assigned a random moment tensor, whose angles (¢, §, A) are chosen from the moment
tensor inversion conducted by Delouis et al. 2021 and sampled with a LHS

¢ ~U([30°,70%])
§ ~ U([20°, 70°]) 4.8)
A ~ U([70°,120°))

Since all source parameters are chosen independently, the source probability distribution can be written
Ds = DPsq *Psg " Psy " Pg " P5 " PA (4.9)
Finally, we follow the same methodology as the HEMEW?-3D database to generate 6.4 s of ground motion inside

each geological domain. Ground motion is synthesized at the surface by 32 x 32 sensors. Within this framework,
we obtain 4000 samples (a, x, 65, u) tailored to the Le Teil earthquake.
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Figure 4.2: Position of the 4000 sources in the Le Teil® database, colored by their depth. The red star denotes the
source that generated the ground motion in Fig. 4.3

4.1.3 Transfer learning

Among the 4000 pairs of geologies and velocity wavefields in the Le Teil database, up to 3000 were used for training,
300 for validation, and 700 for testing. With transfer learning, the neural operator’s weights are initialized with the
weights of the MIFNO trained on the HEMEW®>-3D database instead of starting from a random initialization. This
way, the model starts from a solution where it is already able to predict the propagation of seismic waves in generic
geologies.

Then, the model is trained solely on samples from the Le Teil database, forcing it to specialize to the Le Teil
context. The number of samples used for the second training is called the number of transfer learning samples and
is denoted Nt.. We used between N1 =100 and N7.=3000 transfer learning samples.

Most of the following results were obtained with the 16-layer MIFNO described in Section 3.2.4. The MIFNO was
fine-tuned with one A100 GPU, a learning rate of 1 x 1074, a batch size of 16 and an early stopping criterion when
the validation loss does not improve. Transfer learning with 100 samples took 0.5h for 150 epochs (i.e. 11s per
epoch) and 11 h with 3000 samples for 200 epochs (i.e. 198 s per epoch). We also tried to freeze the upper layers of
the MIFNO but it degraded the MIFNO accuracy on training and test data. Therefore, all weights are updated during
transfer learning.

Only when focusing on the influence of geological heterogeneities on ground motion with a fixed source (Sec-
tion 4.3.1), a 20-layer F-FNO with 16 channels was trained on the HEMEW-3D database and then fine-tuned with a
database of Le Teil geologies and ground motion generated from the fixed source of the HEMEW-3D database.

4.2 Prediction results

4.2.1 Ground motion prediction illustrations

Figure 4.3 illustrates the velocity time series obtained for a test sample in the Le Teil database. Predictions are very
close to the simulated ground truth for all wave arrivals and amplitudes. One can especially notice the numerous
high fluctuations that are very well captured at all sensors. The MIFNO is also able to reproduce the late small-scale
fluctuations (between 3s and 5, Fig. 4.3) thanks to transfer learning. Phase GOFs are excellent or close to excellent
for all sensors, while envelope GOFs are excellent for the sensors with the largest fluctuations (two bottom rows in
Fig. 4.3) and good for the other sensors. These metrics confirm the excellent visual agreement.

The temporal evolution of the wavefield can also be observed on the snapshots (Fig. 4.4). The MIFNO predictions
are very close to the simulations and the spatial propagation of the wavefronts is very well reproduced. As already
mentioned for the generic MIFNO, the late fluctuations are less localized than the reference and appear blurry (see
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Figure 4.3: East-West velocity time series at 8 sensors aligned at x=2.25km for a test sample. Predictions (red
dashed lines) were obtained with the MIFNO fine-tuned on 2000 samples. The reference ground motion is given by
the numerical simulation (black lines). For each sensor, its position along the y axis is indicated, and the envelope
GOF (EG) and phase GOF (PG) are also reported. The source is located in the upper part of the fault plane (5.71 km,
6.94km, -2.15km) and its orientation is defined as strike=68.6°, dip=43.9°, rake=102.7°. The corresponding geology
has a 5.2 % coefficient of variation with correlation lengths of 1.5km, 6.0 km, and 3.0 km in directions z, y, and z.

the bottom left corner at =3.0s). However, one should also notice the amplitude scale which is almost ten times
smaller than the wavefront at t=1.0s. Therefore, the late errors are much less significant for seismic hazard analyses.

4.2.2 Improved accuracy with transfer learning

Figure A.28 compares the evolution of the loss function for different numbers of transfer learning samples. It shows
that the validation loss always converges and errors decrease when using more data. For comparison purposes,
the MIFNO trained only with 3000 samples from the Le Teil database (i.e. without pretraining) is also given (black
dashed line in Fig. A.28). One can observe that its loss evolution is more chaotic and reaches a plateau higher than
the loss with transfer learning (except for Nt =100). This exemplifies the benefits of transfer learning to improve the
accuracy of the MIFNO.

Quantitatively, 700 predictions in the test dataset were assessed with the relative RMSE, the frequency biases
and the GOFs. When predicting ground motion directly with the generic MIFNO (i.e. without transfer learning, line
N7.=0 in Tab. 4.2), metrics are in line with the general results on the HEMEWS-3D database (Tab. 3.3), although
slightly better due to the absence of deep sources in the Le Teil database. With only 100 transfer learning samples,
the GOFs already improve by 1 to 2 units, illustrating the considerable benefits of transfer learning, even with a
limited number of data. After even a light transfer learning (N1.=100), 68 % predictions reach a good envelope GOF
and 61 % an excellent phase GOF. When training the MIFNO solely on 3000 samples from the Le Teil database (line
N7.=3000 in Tab. 4.2), the predictions accuracy was worse than the predictions obtained with 250 transfer learning
samples. This shows the major benefits of initializing the weights with the pre-trained MIFNO.

Table 4.2 also shows that the metrics continuously improve when the number of transfer learning samples in-
creases. The first quartile of frequency biases improves by 23 % between Nt =100 and N1 =3000. The GOFs also
benefit from larger transfer learning databases and the improvement is mainly visible on the first quartile, mean-
ing that good predictions with Nt =100 tend towards excellent with N7 .=3000 This is illustrated by comparing the
MIFNO predictions obtained with 2000 transfer learning samples (Fig. 4.3) and 500 samples (Fig. A.29). While the
main fluctuations are already accurate with 500 transfer learning samples, increasing the number of samples allows
to better capture the late fluctuations with a small amplitude.
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Figure 4.4: East-West component of the simulated (upper row) and predicted (center row) velocity fields for a geology
in the Le Teil database. The error between the prediction and the simulation is shown in the lower row. The white
star indicates the epicenter.

4.2.3 Variability with the choice of the transfer learning samples

Since the full MIFNO is fine-tuned with only a limited number of transfer learning samples, it is important to en-
sure that the results do not depend on the sample choice. For this purpose, the MIFNO was trained with six non-
overlapping sets of 100 to 500 samples and predictions were assessed on a fixed set of 700 test samples. Figure A.30
indicates a moderate inter-set variability, slightly higher for the envelope GOF than the phase GOF. Both the mean
and extreme GOFs improve when the number of transfer learning samples increases, showing that the better accu-
racy observed for larger transfer learning datasets in Tab. 4.2 is not due to some favorable sample choice.

Figure 4.5 additionally shows that increasing the number of transfer learning samples does not compensate
a limited pre-training. Indeed, reducing the number of pre-training samples from 27 000 to 18 000 systematically
worsened the GOFs (0.6 units reduction for the envelope and 0.4 units for the phase GOF). This reduction was
much less pronounced on the whole HEMEW>-3D database (0.1 GOF units worsening when training the MIFNO with
18000 samples instead of 27000). This advocates for the need of a large pre-training database to obtain good
generic predictions and the benefits of fine-tuning on a small database to reach excellent accuracy.

4.2.4 Fault modelling

Since the wave equation 1.2 is linear with respect to the source, it is well-known that the ground motion generated
by an extended fault can be computed as the sum of the ground motion generated individually by each point source
on the fault. Hence, the dynamic rupture of the fault determined by Vallage et al. 2021 was represented by 16 660
point sources with different source time functions describing the slip of each fault patch (Figure 4.6).
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Figure 4.5: Envelope and phase GOF computed for different number of transfer learning samples when the MIFNO
was pre-trained with 18 000 (blue) and 27 000 (orange) HEMEWS-3D samples. The solid line indicates the mean GOF
and the shaded area extends from the first to the third quartile.

In the HEMEW?>-3D database, all point sources have the same source time function (a 10 Hz spice bench, Fig. 2.2).
To correctly model the fault rupture, one needs to predict the ground motion generated from the source time
functions at different points (Fig. 4.6b). Following the methodology of Section 1.1.3, this can be done easily by
i) deconvolving the ground motion response by the spice bench source time function (this gives the approximated
response to a Dirac pulse) and ii) convolving the impulse response with the target source time function. In summary,
the ground motion generated by the fault was predicted following the steps below:

1. select one geology in the Le Teil database

2. for each point on the fault plane, predict the surface wavefields with the fine-tuned MIFNO

3. deconvolve all surface wavefields by the spice bench source time function

4. convolve each surface wavefield by the source time function corresponding to its associated point source

5. sum all surface wavefields
With this setting, the geology is chosen with a 0.11 coefficient of variation, correlation length of 4.5 km along x, 3km
along y, 1.5km along z. The fault is characterized by a 45° strike, 108° rake, and 60° dip (Fig. 4.6a).

Figure 4.7 illustrates the spatial propagation of waves originating from the extended fault. One can first observe
that predictions agree very well with the reference simulation since the wave fronts are accurately reproduced, both
for their arrival times and their amplitude. Despite the first wave arrivals being more complex than the pulse-like
ground motion generated by individual point sources, Fig. 4.8 shows that their temporal evolution is very accu-
rate. Thanks to the contribution of the different point sources, detailed ground motion features are also correctly
captured by the predictions. Time series in Fig. 4.8 and snapshots around 1.8s in Fig. 4.7 indeed show that small-
amplitude fluctuations are well reproduced by the MIFNO. This visual agreement is confirmed by the GOF scores
since phase GOFs are excellent at all spatial locations and envelope GOFs are excellent for 85.6 % of points.

4.3 Uncertainty propagation

Section 4.3.1 focuses on the influence of geological heterogeneities on PGV and PSA. These results were obtained
with the F-FNO fine-tuned on the Le Teil database (i.e. with a fixed source). In the following sections, all results are
provided by the MIFNO.

4.3.1 Influence of geological heterogeneities on Peak Ground Velocity (PGV)

Several intensity measures are of interest for engineering applications. Therefore, one should ensure that the F-FNO
can provide accurate estimates of the different intensity measures. In this section, we focus on the Peak Ground
Velocity (PGV), computed as the maximum value over time of the geometric mean of the two horizontal components.
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Table 4.2: 1st and 3rd quartiles of the metrics computed on 700 test samples specific to the Le Teil region. (upper
row): training with only 3000 specific data. In other experiments, transfer learning was used with 100 to 3000
samples (Nt = number of transfer learning samples). rRMSE: relative RMSE (0 is best), rFFT|ow: relative frequency
bias 0-1Hz (0 is best), rFFTyq: relative frequency bias 1-2Hz (0 is best), rFFThigh: relative frequency bias 2-5Hz (0
is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10 is best). For frequency biases,

Le Teil database with a random source along the fault plane

# samples rRMSE rEFTIow rEFT mid rFFThigh EG PG

Ntrain=3000 | 0.40;0.73 | -0.49,-0.02 | -0.60;-0.06 | -0.67;-0.09 | 6.60; 8.43 | 8.25;9.31
Nt =0 0.64,;0.98 | -0.44,;0.33 | -0.64;0.06 | -0.68;-0.05 | 5.98;7.69 | 6.30; 8.44
Nt.=100 0.41,;0.78 | -0.44,;0.08 | -0.56;0.00 | -0.66;-0.05 | 6.51;8.32 | 8.17;9.25
Nt1.=250 0.38,;0.75 | -0.41,;0.09 | -0.52;0.03 | -0.61;-0.01 | 6.70;8.47 | 8.38;9.35
N1.=500 0.37,0.74 | -0.38;0.11 | -0.49,;0.06 | -0.58;0.02 | 6.87;8.57 | 8.51;9.41
Nt .=1000 0.35;0.69 | -0.42,;0.03 | -0.52;-0.02 | -0.59,-0.04 | 6.92;8.62 | 8.62;9.46
N1L=2000 0.33,;0.68 | -0.38;0.05 | -0.47;0.01 | -0.54;-0.01 | 7.10;8.72 | 8.72;9.51
N1.=3000 0.33,;0.68 | -0.34;0.08 | -0.43,;0.04 | -0.51,;0.02 | 7.20;8.78 | 8.76;9.53

negative values indicate underestimation.

[uss) 2

(a) 3D representation of the fault plane

Figure 4.6: Kinematic model of the fault that generated the Le Teil earthquake computed by Vallage et al. 2021.
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Colors indicate the final seismic moment of each point.
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Figure 4.7: East-West component of the simulated (upper row) and predicted (center row) velocity fields for a het-
erogeneous geology in the Le Teil database. The error between simulation and prediction is given in the lower row.
The black rectangle indicates the fault extend.
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Figure 4.8: East-West velocity time series at 8 sensors aligned at £=2.25km generated from the extended fault.
Predictions (red dashed lines) were obtained with the MIFNO fine-tuned on 2000 samples. The reference ground
motion is given by the numerical simulation (black lines). For each sensor, its position along the y axis is indicated.
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(b) Each test sample is represented by the geological coeffi-
cient of variation (x axis). For each sample, the PGV bias is
given as the mean of all sensors (black dot) and the standard
deviation across samples (grey error bar).

(a) For each test sample and each sensor point, the predicted
PGV is shown against the true PGV. Colors denote the density
of points.

Figure 4.9: PGV prediction with the fine-tuned F-FNO

Figure 4.9a first compares the predicted PGV with the simulated PGV for 700 test samples and all spatial points.
One can observe that the predictions align well with the ground truth for a large majority of points (dense dark
area). This indicates that the F-FNO accurately predicts the peak values, despite not being targeted for this specific
quantity of interest. When predictions are inaccurate, they are more often underestimated than overestimated.
This is especially true for large PGVs (larger than 10 cm/s) that represent rare events where predictions are very
challenging.

Quantitatively, the PGV accuracy can be defined as the relative error between the prediction and the simulation.
Figure 4.9b then shows the PGV relative bias as a function of the coefficient of variation for the associated geology.
One can notice that predictions are excellent when heterogeneities have a low amplitude. Indeed, the PGV relative
bias is lower than 2.5 % for coefficients of variation smaller than 5%. Then, in average, the F-FNO tends to slightly
underestimate the PGV. Indeed, the PGV relative bias sensors is between -7.4 % and 3.3 % for coefficients of varia-
tion around 10 % (one standard deviation around the mean, Fig. 4.9b). Across all samples, the PGV relative bias is
comprised between -17 % and 14 % for coefficients of variation lower than 10 %. When heterogeneities have large
amplitudes (coefficients of variation larger than 20 %), the underestimation generally worsens. Thus, the F-FNO
provides accurate PGV estimates for low to moderate coefficients of variation that are commonly encountered in
practice at our scale of interest (few kilometers). Increasing the number of transfer learning samples improves the
PGV predictions.

4.3.2 Sensitivity analysis

In the following, we analyze the relationships between the geological/source parameters and the PSA. To ease the
interpretation, the analysis is restricted to six receivers Rg, R1, - - -, Rg with various azimuths from the fault (Fig. 4.10).

Global sensitivity analysis amounts to quantifying the influence of individual parameters X1, - - - , X, on a model
outcome Y € R = M(Xy,---,Xg). In our framework, parameters X1, --- , X, are the coefficients of variation
o} and the correlation lengths in the three directions £, 1, £, 1, . j for each of the 5 layers k ¢ {1,---,5}inthe
geological model. Parameters also contain the source position relative to the fault s, s3, s, and the source orien-
tation ¢, 6, A. The outcome Y is the PSA at a given receiver x g and a given period T". Denoting h the deterministic
function that computes the PSA from the velocity time series, the model is M := h o G .

One common method in global sensitivity analysis is the Sobol analysis (Sobol 2001). It provides first-order Sobol’
indices S; that quantify the influence of parameter X; on the outcome Y via

_ Var(E[Y|X;])

Si = Var(Y) @19
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Figure 4.10: Six receivers Rg, R1, - - -, R and the vertical projection of the fault plane colored by depth.

To account for interactions between parameters, let us introduce

D;(Y) :=Var(E[Y|X;]) @11

Dij(Y) = Var(E[Y]X;, X;]) — Di(Y) — D;(Y), '
with natural extensions to higher-order interactions. The total indices St, can then be computed on all sets of
parameters [ including ¢

So,= Y. S (4.12)
Ic{1,-,q}|iel

To compute the expectation in the Sobol’ indices, we rely on a Saltelli sampler with 213 Monte Carlo samples (Saltelli

2002). Since our model depends on ¢ = 26 parameters, the Sobol analysis requires 213 (2¢q+2) = 442 368 samples.
All geological and source parameters are independent and they follow the same distribution as the Le Teil database
(equations 4.4, 4.6, 4.8), with the exception of the coefficient of variation that was limited to smaller values, common
in the literature (Section 1.2) to avoid large deviations from the reference geology. Coefficients of variation o}, follow
a truncated normal distribution between 0 and 0.15 with mean 0.1 and standard deviation 0.04

Ok ~ Doy, = Njo,0.15)(0.1,0.04) (4.13)

From the 442368 parameter values determined by the Saltelli sampler, we designed the corresponding 3D hetero-
geneous geological models and predicted the velocity wavefields with the MIFNO. The PSA is finally computed at
the six receivers of interest (Fig. 4.10), leading to 442 368 predictions x 29 PSA periods X 6 receivers = 76972032
values to analyze.

Figure 4.11 shows the first-order and total Sobol indices for the PSA computed at receiver R3 at all periods
between 0.2s and 3s. The total indices are the largest for the two parameters s, and sg corresponding to the
source position on the fault plane. They are also the largest first-order indices and this observation holds for all
receivers (Tab A.12). Note that sg accounts for the source depth and (Sars 55) is correlated with the source-to-
receiver distance. Therefore, it is perfectly expected that they strongly influence the PSA.

The source orientation (¢, d, A) has moderate total indices (smaller than 0.1) and the relative influence of each
angle varies between the receivers (Tab A.13). The first-order indices of the geological parameters o, £ i, £y i, £ k
are non-significant but their total indices are of the same order as the total indices of the source orientation. There-
fore, it means that heterogeneities influence the PSA with high-order interactions between several parameters
(second-order interactions account only for a small portion of the total indices).

It is interesting to notice that indices are generally similar for all periods, excepting at receivers Ry and R4 where
total indices of geological parameters are significantly larger at small periods (Fig. A.31). Both receivers are located
along the fault normal, which may explain that they exhibit a slightly different behaviour than the receivers parallel
to the fault plane.
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Figure 4.11: First-order (top) and total (bottom) Sobol indices for the PSA on the East-West component computed at
receiver R3. Each of the 26 parameters is reported on the x axis and the y axis denotes the period.
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4.3.3 Parameters conditioning from fictive observations

Although all geological models designed in the previous section are plausible realizations in the Le Teil region, they
may contradict the real geology, for instance if high-velocity heterogeneities have been located in an area with low-
velocity fluctuations. To better inform the PSA predictions, we want to focus on admissible geologies that approach
the real geology. One possibility to discriminate these admissible geologies is to create or record a small-magnitude
event with a controlled source (e.g. microtremor) and record the PSA at a reference receiver. In the absence of such
recordings, we use a fictive observation obtained from numerical simulations.

Let us denote S = {a;, Tsi, Hs,i}1§i§442368 the set of geologies, source positions, and source orientations sam-
pled with the Saltelli sampler. The observed ground motion w* is simulated with a geology a* and source parameters
(xk, 0%) that do not belong to S. The observed PSA is computed at receiver Rz. This quantity of interest is denoted
y* = h(u*(xR,)). Figure 4.12a shows the PSA distribution on the set S (by abuse of notation, this implies the set
of PSAy = h(fJ = h(Gy(a, x5, 65)) computed from parameters (a, s, 05) in S). The observed PSA y* is close to
the median on the East-West and vertical components, and higher than the median on the North-South component
(Fig. 4.12a).
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Figure 4.12: Distribution of predicted PSA i on the three components at receiver R3 (grey shaded areas) and obser-
vation y* (red dashed line)

The difference between one PSA g obtained from the set S and the observed PSA y* is computed as the Euclidean
distance ||§ — y*|| (more specific metrics could be chosen as well but we aim at demonstrating the applicability of
the method). Then, we consider that the 10000 realizations with the smallest difference are admissible and this
set is denoted S|y* (the choice of 10000 admissible realizations corresponds to a rupture point in the cumulative
distribution of || — y*||). Figure 4.12b illustrates that the PSA variance reduces significantly when considering the
set of admissible geologies.

One can then consider the set of source positions x; € S,«. This yields posterior distributions of the source
parameters constrained by the observation y*. Figure 4.13a shows that the source position is well constrained
by the observation since the variance significantly reduces between p(z,) and p(zs|y*) (similarly for p(ys|y*) and
p(zs|y*)). Additionally, the distribution concentrates around the source position that generated the observation.
Although the posterior distributions of the strike and dip angles are different from the prior distributions, they are
less concentrated around the true values (Fig. 4.13b). And there is no significant difference between the prior and
posterior distributions of the rake angle. This indicates that it is more difficult to constrain the source orientation
than the source position. Moreover, the observation does not allow to constrain the geological parameters, as
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Figure 4.13: Distribution of source positions (a) and source orientations (b) for samples in S (grey) and admissible
samples in Sj,« (blue). The parameters corresponding to the observation x, 6 are shown with the red dots.

illustrated with the posterior distributions of the coefficients of variation that are similar to the prior distributions
(Fig. A.32).

Finally, it is interesting to note that the parameters that are better constrained by the observation correspond to
the ones with the largest first-order Sobol indices. Indeed, large Sobol indices mean that a small parameter variation
induces a large outcome change. Therefore, one is able to discriminate parameters that do not lead to a PSA close
to the observation.

4.3.4 Uncertainty quantification on the PSA

The set of 10000 admissible geologies provides distributions of predicted PSA at each receiver p(g(xr)|y*). Civil
engineering focuses on the highest percentiles of this distribution since structures are most threatened by high
ground motion intensity. In this percentile estimation, one should also i) account for the MIFNO prediction error, ii)
compare the predicted PSA percentile with simulations, and iii) estimate the number of samples necessary to reach
convergence.

The 4000 training samples provide a reference to calibrate the MIFNO prediction error on the PSA. This error
€xp, T 1S estimated at each receiver g and each period T

logio(y(xr, T)) = expr(0gi0(9(xr, T))) + € (4.14)

€xp,T 1S skew normal distribution from which we find the parameters that minimize the residual € (Fig. A.33).

Then, we choose randomly a set of n samples in S}« and compute the 90th percentile of the predicted PSA in
this set. For n varying from 10 to 10000 this procedure is repeated 100 times to quantify the variability (orange
boxplots in Fig. 4.14). For each PSA prediction, the correction ey, 7 is also applied before computing the 90th
percentile. Figure 4.14 shows that the variability decreases when the number of samples n increases (red boxplots).
Indeed, the percentile estimation becomes more robust when the set is large. With correction, the predicted PSA
converges towards 2.16 m/s?. The confidence interval estimated with 100 repetitions of 1000 samples is [2.01 m/s?;
2.34m/s?].

Without the surrogate model, the 90th percentile of PSA could also be estimated from simulations, in which
case the geological models are not constrained. In the Le Teil database of 4000 samples, 944 geologies satisfy
the conditions of the sensitivity analysis (coefficient of variation smaller than 0.15). Therefore, the 90th percentile
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is evaluated on n samples among the 944. Except for very small sets (n=10), the PSA variability is comparable
between simulations and predictions (Fig. 4.14). However, the simulated PSA converges towards 1.94 m/s2, which is
lower than the lower bound of the predicted confidence interval.

Finally, one should note that these results have been obtained at receiver R4, which is not the receiver used
to constrain the PSA with the observation. Despite this, the predicted PSA is coherent with the simulation. Similar
conclusions can be drawn at other receivers (Fig. A.34) and other periods (Fig. A.35).

4.4 Conclusion

Using a database of geological models and source properties tailored to the Le Teil earthquake, the MIFNO was fine-
tuned to predict ground motions specific to this region. We showed that transfer learning is an efficient approach to
improve the MIFNO accuracy when focusing on a target area. As few as 250 transfer learning samples were sufficient
to obtain good envelope GOFs and excellent phase GOFs. This training took only 1 h with one A100 GPU, making it
affordable for other site-specific applications.

We proved that the MIFNO has an excellent phase accuracy for 69% of predictions (GOF larger than 8) and good
amplitude accuracy for more than 73% of predictions (GOF larger than 6). In particular, the wave arrival times
are well reproduced, the spatial propagation of the waves is correctly captured, and the amplitude of the main
fluctuations is accurate. Thanks to this good accuracy, we applied the superposition principle of the elastic wave
equation to predict ground motion generated by an extended fault source. Results were excellent on the vast
majority of sensors, despite the temporal complexity of the ground motion time series.

The influence of geological uncertainties on ground motion intensity was further assessed with the Peak Ground
Velocity (PGV). Results indicate that the F-FNO predictions are excellent when the geologies have moderate ampli-
tude heterogeneities ; the mean PGV relative bias was between -3 % and 7 % when geologies have a coefficient of
variation smaller than 0.1. When geologies have stronger heterogeneities, the F-FNO tends to slightly underestimate
the PGV when comparing predictions and simulated ground truths for the same geology.

Thanks to the MIFNO speed, a sensitivity analysis was performed on more than 440000 ground motion pre-
dictions. First-order Sobol indices showed that the PSA is largely influenced by the source position. Geological
parameters have non-negligible total indices but they reflect high-order interactions. Using a fictive observation at
a reference receiver, we were able to constrain the source position and obtain meaningful posterior distributions.
However, constraining the source orientation was less obvious and a single observation was not enough to infer
the geological parameters that generated the observation. These results show that the MIFNO is an appropriate sur-
rogate model to address inverse problems and we have only provided a first insight into the possible applications.
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More advanced approaches could be explored to study the optimal position of reference receivers, choose a more
specific definition of the admissible geologies, or formalize a rigorous inverse problem.

Our method already provides confidence intervals of the 90th PSA percentile. By selecting only admissible geolo-
gies, the MIFNO predictions rely on realistic geological and source parameters. If one were to compute confidence
intervals only with numerical simulations, it would not be possible to restrain the variability of configurations and
extreme unrealistic PSA values could be found. For real-life applications where security is a major concern, it would
be ideal to run a small number of simulations wisely sampled among the set of admissible geologies to ensure that
the confidence intervals match the MIFNO estimates.

The influence of the MIFNO error could also be addressed in more details. Especially, there is a wide literature on
neural networks that include an intrinsic notion of uncertainty. Extending those methods to neural operators is not
an easy task due to high computational requirements but several studies have already shown promising results (e.g.
Agata et al. 2024; Cao et al. 2024; Guilhoto and Perdikaris 2024; Ma et al. 2024; Z. Zou et al. 2022). They provide a
complimentary view to our approach where uncertainty evaluation does not rely on repeated calls to the surrogate
model.
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Conclusion and perspectives

Physics-based simulations

Physics-based simulations are convenient methods to evaluate ground motion intensity. Thanks to advanced nu-
merical schemes, they solve the elastic wave equation with high fidelity. However, their outcomes strongly depend
on the simulation parameters such as the geological models and source properties. When simulating the ground
motion produced by the Le Teil earthquake, we showed in Chapter 1 that adding random heterogeneities to the
reference geological model was an adequate way to compensate for the general lack of geological knowledge. Es-
pecially, heterogeneities attenuated the ground motion peaks coming from the absence of scatterers in the smooth
reference model. Yet different heterogeneities samplings led to significant differences in ground motion intensity
and the computational costs of large-scale 3D physics-based simulations prevent uncertainty quantification analy-
ses.

Simulations of the Le Teil earthquake indicated the key elements to include in our database of ground motions.
The HEMEW?®-3D database contains 30 000 geological models of size 9.6 km x 9.6 km x 9.6 km accompanied by the
surface ground motion generated by random point-wise sources. The geological models are based on a random
arrangement of horizontal layers onto which random heterogeneities are added. The choice of horizontal layers
is lightly constrained to offer flexibility to the machine learning model. Random heterogeneities are stronger than
the typical values observed at our scale of interest to create geological peculiarities that cannot be represented by
horizontal layers. In Chapter 2, we showed that this design leads to a large intrinsic dimension of the geological
database, at least of the order of 30.

Inside each geological domain, seismic waves were propagated from a point-wise source having a random loca-
tion and random orientation. The propagation was computed with the SEM3D earthquake simulator based on the
Spectral Element Method. The 3D simulations are valid up to a frequency of 5Hz and are conducted for 6.4s. The
30000 simulations amount to a simulation time of 6.8 x 10° h equivalent CPU. To reduce the memory requirements,
seismic waves are recorded only at the surface of the propagation domain on a grid of 32 x 32 virtual sensors. Then,
each ground motion sample in the HEMEW®>-3D database is a set of three 3D variables (one for each component of
ground motion). The intrinsic dimension of the ground motion database is at least on the order of 100, suggesting
the high complexity of the ground motion prediction task by a surrogate model.

The Multiple Input Fourier Neural Operator (MIFNO)

We proposed an extension of the Factorized Fourier Neural Operator (F-FNO) called Multiple Input Fourier Neural
Operator (MIFNO) that predicts surface ground motion depending on a 3D geology and a vector of source properties.
This surrogate model derives from successive extensions of the Fourier Neural Operator (FNO) and achieves the
following objectives:
1. the geological model is given as a 3D variable, which allows any parametrization of geological interfaces and
small-scale heterogeneities
2. ground motion is a time series predicted for any point at the surface
3. although ground motion is a time-dependent 3D variable, we avoid the need for a huge 4D surrogate model
with a depth-to-time conversion between inputs and outputs
4. the earthquake source can be placed at any location inside the domain and parametrized by any moment
tensor orientation
The MIFNO predicts accurate ground motion for a vast majority of samples. It is especially accurate to estimate
the wave arrival times and the phase of ground motion signals, as illustrated by the excellent phase Goodness-Of-
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Fit (GOF). Envelope GOFs quantify the errors on ground motion amplitudes and are considered good to excellent.
Overall, these results demonstrate that the MIFNO is an accurate surrogate model for ground motion prediction.

Predictions are also robust to out-of-distribution data as quantified by the good predictions on realistic geologies
such as the Marmousi model and the good predictions when the source is located outside the training domain. The
MIFNO can also be readily applied to inputs of higher resolution than the training resolution. Although it does not
systematically improve the results, predictions are stable for higher resolutions.

Prediction errors can be interpreted from several physical variables, which helps to understand the MIFNO lim-
itations. We showed in Chapter 3 that errors increase for high-frequency components, reflecting the well-known
spectral bias inherent to neural networks. Larger errors are also obtained for geological models displaying small
correlation lengths and large coefficients of variation. Indeed, geological heterogeneities induce dispersion that
create ground motion fluctuations. Ground motion then becomes intrinsically harder to predict. Similarly, deeper
sources and larger epicentral distances generally lead to more complex ground motion. However, the most en-
ergetic, and hence damaging, ground motions tend to be well predicted, which is of the utmost importance for
engineering applications.

Training the MIFNO on the HEMEW?>-3D database provides a generic surrogate model that gives good predictions
for a wide variety of geological models and source parameters. However, training on a large database is compu-
tationally demanding and it becomes difficult to significantly improve the accuracy without massive investments
in data collection and multi-GPU training. In this context, transfer learning is an efficient approach to specialize
the MIFNO to a target task with light computational requirements. In Chapter 4, we designed a transfer learning
database tailored to the Le Teil earthquake. The variability of geological models is reduced since they all originate
from a reference 1D model and sources correspond to the La Rouviére fault that created the Le Teil earthquake.
We showed that as few as 250 samples from this tailored database were sufficient to improve the MIFNO accuracy
by 1 to 2 GOF units. One could even achieve almost excellent predictions with a few thousands transfer learning
samples.

We illustrated the benefits of the fine-tuned MIFNO on several applications that are relevant for seismic hazard
analyses. When geological models present moderate heterogeneities (i.e. in line with observations at our scale of
interest), the F-FNO predicts accurate Peak Ground Velocity (PGV). It can also predict Pseudo Spectral Acceleration
(PSA) distributions that match well with the simulations. Thanks to the speed of the MIFNO predictions, confidence
intervals can be obtained by predicting ground motion for hundreds of thousands of geological and source config-
urations. They give higher estimates than the simulations, thereby providing safety margins.

Societal implications

Uncertainty quantification is unreachable with high-fidelity 3D simulations due to the computational time. How-
ever, deep learning surrogate models require large training databases that need to be acquired from numerical
simulations (at least in the supervised learning framework adopted in this work). Throughout this thesis, the energy
consumption of the different tasks was assessed to evaluate whether the MIFNO is beneficial compared to simu-
lations in this respect. We summarize the results from Tab. 1.3, Tab. 2.3, and Tab. 3.6 in the following Tab. 5.1 and
Fig. 5.1.

Conducting the uncertainty analysis of Chapter 4 with Nyc=10° realizations would represent 11 MWh with CPU
simulations and preliminary benchmarks on SEM3D give an equivalent projection of 1.9 MWh with GPU simulations.
Assuming that the generic MIFNO would be applied at 100 different locations where transfer learning would be used
to fine-tune the surrogate model, the same uncertainty analysis would amount to 0.14 MWh. Therefore, the MIFNO
reduces the total energy consumption by two orders of magnitude compared to the current framework.

We have mentioned in Chapter 4 that the number of initial training samples was crucial to allow accurate pre-
dictions after transfer learning. By factorizing the costs of the database simulation across several studies, one can
make the corresponding energy consumption reasonable. Results in Tab. 5.1 assume that a large number of transfer
learning samples would be necessary to reach excellent accuracy on the target task and we would argue that they
give a conservative evaluation of the MIFNO energy consumption. Most importantly, the MIFNO prediction time are
so negligible that the MIFNO energy consumption does not depend on the number of predictions. Though the costs
scale linearly in the case of numerical simulations. Therefore, demanding Monte Carlo frameworks with millions of
iterations, or more, will benefit even more from the MIFNO (Fig. 5.1).

Finally, transferring knowledge between a generic surrogate model and target tasks require that the database,
the neural operator architecture, and the weights of the pre-trained model are publicly available and usable. The
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Task Number of realizations | Energy consumption (MWh)
SEM3D simulation (CPU) Nmc = 10° 11
SEM3D simulation (projection GPU) Nmc = 10° 1.9
Database simulation (CPU) Ntrain = 30000 shared in 100 0.033
Transfer learning database (CPU) NtL = 1000 0.11
MIFNO training (GPU) Ntrain = 30 000 shared in 100 0.00022
MIFNO fine-tuning (GPU) N1L = 1000 0.00074
MIFNO prediction (GPU) Nmc = 10° 0.000052
Total MIFNO (CPU + GPU) Nmc = 10° 0.14

Table 5.1: Estimation of the energy consumption for all the tasks presented in this thesis. The energy consumption
of 1 CPU is estimated to 4.88 Wh. The energy consumption of 1 GPU is estimated to 187 Wh. In all situations, the
domain has a size of 9.6km X 9.6 km x 9.6 km and time series have a duration 7=6.4s. From preliminary bench-
marks, SEM3D simulation time is estimated to 0.10h one 1 GPU. The costs of building the HEMEW®-3D database
and training the MIFNO are shared between 100 studies at different sites of interest.

Energy savings

CPU simiulation
mmw GFU SrlatEnn | progectan)
H MIFNO predichon s

Enengy corsumation {MWh

10 1 104 10 10°
Mumber of samplet |al

Figure 5.1: Energy consumption of n ground motion evaluations using numerical simulations on CPUs (black line),
GPUs (black dashed line), and the MIFNO (red bards).

HEMEW-3D and HEMEW?>-3D databases can be downloaded on Recherche Data Gouv' and the code to train, re-use,
and fine-tune the neural operators is available on Github?.

Perspectives

The field of Scientific Machine Learning (SciML) evolves rapidly and new neural operators regularly improve state-
of-the-art benchmarks. Several techniques could improve the MIFNO accuracy, such as adding constraints on the
derivative in the loss function (Cao et al. 2024; Cho et al. 2024) or focusing on extreme values that are the most
threatening for infrastructures (Lagerquist and Ebert-Uphoff 2022; Xu et al. 2024). Building on alternative architec-
tures that alleviate the requirements of a Cartesian grid (H. Lin et al. 2022; Z. Li et al. 2023b), one could also envision
a surrogate model that considers a non-flat topography. This would allow statistical quantification of site effects
due to 3D topography.

The MIFNO can also be extended to more flexible geological parameters. Especially, one could add the P-wave
velocity and density as additional inputs. We do not expect a massive increase in computational requirements
since the architecture would require only small changes in the uplift network. However, it requires designing a new

"https://doi.org/10.57745/LAI6YU
2https://github.com/lehmannfa/HEMEW3D

100


https://doi.org/10.57745/LAI6YU
https://github.com/lehmannfa/HEMEW3D

training database. In this framework, it would be interesting to add more physical constraints to the geological
models. In particular, one may want to reach lower surface velocities and avoid strong velocity inversion between
layers. It it also possible to include anisotropy in the random fields (Ta et al. 2010).

Considering the benefits of transfer learning, it is desirable to apply this method with other geological models.
For instance, it would be interesting to investigate the site effects created by sedimentary basins with this approach.
Thanks to the 3D representation of geological models, the MIFNO allows a rich parametrization of the basin shapes
and it could complement existing works based on numerical simulations (e.g. Soto Moncada 2023).

The MIFNO could also be coupled with generative methods that increase the frequency content of physics-based
simulations to reach frequencies of interest in engineering applications (e.g. Gatti and Clouteau 2020). Then, it could
be embedded in a domain reduction method to analyze soil-structure interactions in deeper extents than currently
achieved with numerical simulations (Korres et al. 2022).

Finally, many physical problems rely on parametrized PDEs with various inputs and wave propagation appears in
several contexts others than seismology. Although the MIFNO was inspired by seismic wave propagation challenges,
its architecture is more general and can certainly benefit other scientific communities.
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Appendix A

Appendices

A.1 Le Teil simulations

network | latitude | longitude | elevation type di:gigt{ﬂn) (CfnG/'zQ) (czfys)
VIVF LDG | 44.86° N 4.67°E 618 m velocimeter 37 km - -
OGCB FR | 44.85° N 5.1°E 773 m velocimeter 50 km 1.80 0.11
P53 OHP | 44.74°N 497°E 157 m velocimeter 34 km 7.53 0.75
CAI535 SNCF | 44.66° N 4,92°E 212 m velocimeter 25km 16.32 0.64
CRU1 3C | 44.64°N 4.76° E 77 m | accelerometer 14 km 44.91 1.21
P54 SNCF | 44.61°N 4.88°E 148 m velocimeter 19 km 19.29 0.80
OGDF FR | 44.56° N 5.07°E 709 m velocimeter 32 km 412 0.35
CAI550 SNCF | 44.53° N 4.82°E 129 m velocimeter 11 km 96.00 2.76
P55 SNCF | 44.48°N 477°E 133 m velocimeter 8 km 69.65 3.18
0GCC FR | 44.43°N 5.55°E 1250 m velocimeter 70 km 0.77 0.21
CAI567 SNCF 44.4° N 474°E 60 m velocimeter 14 km 15.14 1.76
ADHE 3C | 44.37°N 477°E 90m velocimeter 17 km 417 0.31
BANN FR | 44.37°N 4.16°E 343 m | accelerometer 44 km 4.96 0.42
P56 SNCF | 44.32°N 47°E 48 m velocimeter 22 km 8.24 1.15
OGLP RA | 44.31°N 4.69° E 46 m | accelerometer 23 km 6.10 1.15
P60 SNCF | 44.16° N 4,74° E 42 m velocimeter 39 km 6.78 0.82
CAl604 SNCF | 44.09° N 477°E 25m velocimeter 48 km 2.92 0.15
P61 SNCF | 43.99° N 4,74° E 44 m velocimeter 59 km 7.38 0.77
SAUF FR | 43.94°N 511°E 230 m | accelerometer 73 km 1.33 0.14
P71 SNCF | 43.94°N 472°E 109 m velocimeter 64 km 0.69 0.09
P62 SNCF | 43.93°N 478°E 17 m velocimeter 66 km 3.72 0.28
CAl633 SNCF 43.9°N 4.89° E 38 m velocimeter 70 km 1.58 0.15

Table A.1: Stations with available records ordered by decreasing latitude. PGA (resp. PGV): maximum of the East-
West and North-South components for the Peak Ground Acceleration (resp. Velocity). VIVF is a vertical sensor only.
LDG = Geophysical and Detection Laboratory of the French Alternative Energies and Atomic Energy Commission
(CEA). FR, OHP, 3C, RA are networks of RAP-Résif (French Permanent Accelerometric Network). SNCF = French Na-
tional Railway Company
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Figure A.1: Frequency response spectra of the numerical simulation (in red) obtained with the 1D geological model

and a point source. Comparison with seismograms records (in black). Velocities are given in the East-West (E-W),
North-South (N-S), and vertical (Z) directions for the station OGDF. R denotes the epicentral distance.
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Figure A.2: Results of the numerical simulation (in red) obtained with the 3D geological model and a point source.
Comparison with seismograms records (in black) filtered at 5 Hz. Velocities are given in the East-West (E-W), North-
South (N-S), and vertical (Z) directions.
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Figure A.3: Frequency response spectra of the numerical simulation (in red) obtained with the 3D geological model

and a kinematic fault model. Comparison with seismograms records (in black). Velocities are given in the East-West
(E-W), North-South (N-S), and vertical (Z) directions for the station OGDF.
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Figure A.4: Results of the numerical simulation (in red) obtained with the 3D geological model and a kinematic fault
model. Comparison with seismograms records (in black) filtered at 5 Hz. Velocities are given in the East-West (E-W),
North-South (N-S), and vertical (Z) directions in stations OGDF A.4a and OGCB A.4b
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Figure A.5: Velocities obtained with two random fields added to the 1D geological model in OGDF station. The third

random field is shown in Figure 1.16.

117



A.2 Dimensionality reduction
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Figure A.6: Correlation dimension (y-axis) as a function of the dataset size (z-axis) for geological models (left) and
ground motion wavefields (right). For ground motion, the HEMEW-3D database is used for the fixed source (black
line) and the HEMEW®-3D database corresponds to the blue line.

118



Ground motion wavefields {fixed source)

Feological models fived source. slope=11.8

10° ] slope=Q. 1 10714

-t /

107 4 107" 4 J

) =
T 1079 j /
>
wd 14 10-* 4

10°% o

1n-* 10-?

10" 4 . ——— - S
= Ty Ty = ——rreey 10 : I'D-I lur\.
1g-1 167 -1 10° Mormalized radivis

Mermialized raling @
(b) Correlation dimension for 30000 ground motion wave-
(a) Correlation dimension for 30 000 geological models fields with a fixed source (HEMEW-3D database)
Ground moton wavefieids {random source)
- /,*""___
101 o
10y~
= 1075
y-
10+ o
165
1n=® ==  Fandom sprte, Sope= 2.0
- FANIOMm SoWTe, WopeE=" 3
1=

1o e 13-t 104
S Al e Tl i

(c) Correlation dimension for 30000 ground motion wave-
fields with a random source (HEMEW®-3D database)

Figure A.7: The correlation dimension Cy (1) is computed from the number of samples being at (Euclidean) distance
smaller than r for different values of r (Equation 2.10). Then, the correlation dimension is obtained as the slope of
the linear part in the log-log representation.
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A.3 Fourier Neural Operators architectures

This section provides details on the layers in each FNO variant: FNO (Tab. A.2), U-NO (Tab. A.3), and F-FNO (Tab. A.4).
The number of parameters is indicated for each layers (“k” denotes thousands and “m” denote millions).

output shape | # parameters
b, 32,32,32,1
concatenate grid b,32,32,32,6
uplift b,32,32,32,16 200
permute and optional padding b, 16,32, 32, 32
Fourier layer 1 (modes=16, 16, 16) b, 16,32, 32, 64 8.39m
Fourier layer 2 (modes=16, 16, 32) | b, 16, 32,32, 128 16.8m
Fourier layer 3 (modes=16, 16, 32) | b, 16, 32, 32, 256 16.8m
Fourier layer 4 (modes=16, 16, 32) | b, 16, 32, 32, 320 16.8m
unpadding and permute b, 32,32, 320, 16
projection Qg b, 32, 32,320, 1 1.1k
total 58.7m

Table A.2: For each group of operations in the FNO, output shape and number of parameters in this group. In the
output shape column, dimensions refer to (batch size, x, y, z or t, channels). The number of channels is 16 in all
layers. The number of modes in (x, y, z or t) is indicated for each Fourier layer.

output shape | # parameters
b, 32,32,32,1
concatenate grid b, 32,32,32,6
uplift b, 32,32,32,16 200
permute and optional padding b, 16, 32,32, 32
Fourier layer 1 (modes=12, 12, 12) b, 16, 24, 24, 24 3.54m
Fourier layer 2 (modes=9, 9, 9) b, 16,18, 18,18 1.49m
Fourier layer 3 (modes=6, 6, 7) b, 16,13,13,13 516k
Fourier layer 4 (modes=4, 4, 5) b, 16,8, 8,8 164k
Fourier layer 5 (modes=4, 4, 5) b, 16,13,13,17 164k
Fourier layer 6 (modes=6, 6, 9) b, 16, 18, 18, 34 1.33m
Fourier layer 7 (modes=9, 9, 17) b, 16, 24, 24, 64 5.64m
Fourier layer 8 (modes=12, 12, 20) | b, 16, 32, 32, 320 11.8m
unpadding and permute b, 32, 32,320, 16
projection Qg b, 32,32,320, 1 217k
total 24.6m

Table A.3: For each group of operations in the U-NO, output shape and number of parameters in this group. In the
output shape column, dimensions refer to (batch size, x, y, z or t, channels). The number of channels is 16 in all
layers. The number of modes in (x, y, z or t) is indicated for each Fourier layer.
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output shape | # parameters
b, 32,32,32,1
concatenate grid b,32,32,32,4
uplift b, 32,32,32,16 96
permute and optional padding b, 16, 32,32, 32
F-Fourier layer 1 (modes=16, 16, 16) b, 16,32, 32,32 26.8k
F-Fourier layer 2 (modes=16, 16, 16) b, 16,32,32,32 26.8k
F-Fourier layer 3 (modes=16, 16, 16) b, 16, 32, 32, 32 26.8k
F-Fourier layer 4 (modes=16, 16, 16) b, 16, 32,32, 32 26.8k
F-Fourier layer 5 (modes=16, 16, 16) b, 16,32, 32, 64 26.8k
F-Fourier layer 6 (modes=16, 16, 32) | b, 16, 32,32, 128 35.0k
F-Fourier layer 7 (modes=16, 16, 32) | b, 16, 32, 32, 256 35.0k
F-Fourier layer 8 (modes=16, 16, 32) | b, 16, 32, 32, 320 35.0k
unpadding and permute b, 32, 32,320, 16
projection Qg b, 32,32, 320, 1 2.4k
total 246k

Table A.4: F-FNO with 8 layers. For each group of operations in the F-FNO, output shape and number of parameters
in this group. In the output shape column, dimensions refer to (batch size, x, y, z or t, channels). The number
of channels is 16 in all layers. The number of modes in (x, y, z or t) is indicated for each factorized Fourier layer
(F-Fourier layer).
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A.3.1

Main results on the Factorized Fourier Neural Operator (F-FNO)

The influence of the training database size was investigated by reducing the database of 27 000 training samples to
12000 samples. Figure A.8 shows that a small database (Ntain=12 000) is detrimental but increasing from 22 000 to
27000 training samples has no visible effect on the prediction error.
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Figure A.8: frequency bias as a function of the number of training samples for the U-NO. frequency bias is given for
low frequency (0-1Hz, light grey), medium frequency (1-2 Hz, drak grey), and high frequency (2-5Hz, high frequency).
Average results are reported for 1000 training samples (filled markers and solid lines) and 1000 validation samples
(unfilled markers and dashed lines). Note that the y-axis gives the opposite of the frequency bias.

The original U-NO model has three skip connections (Fig. 3.5). The importance of the skip connections was quan-
tified by removing them progressively from top to bottom. Results for two skip connections in Fig. A.9 correspond
to a model without the upper skip connection (between the Fourier layers F7 and F3).

Evaluating the accuracy of predictions with frequency biases suggests that the two upper connections are not
useful. The lowest errors are even found for the U-NO with a single skip connection (between the Fourier layers F3

and Fg).
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Figure A.9: frequency bias as a function of the number of skip connections in the U-NO. frequency bias is given for
low frequency (0-1Hz, light grey), medium frequency (1-2 Hz, drak grey), and high frequency (2-5Hz, high frequency).
Average results are reported for 1000 training samples (filled markers and solid lines) and 1000 validation samples
(unfilled markers and dashed lines). Note that the y-axis gives the opposite of the frequency bias.
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A.3.2 F-FNO hyperparameters

This section presents the influence of hyperparameters on the prediction accuracy and complements the main
text in Section 3.3.3. The default F-FNO has 8 layers, 16 channels (d, = 16), 16 Fourier modes in the first and
second dimension (M, = M;o = 16, V/) and 32 Fourier modes in the third dimension except for the first layer
(M3 = 16, My 3 = 32,V{ > 2). With nominal settings, training was performed on 4 Nvidia A100 GPUs for 350
epochs with a learning rate of 0.0006 halved on plateau, and the relative Mean Absolute Error as loss function.
Activation functions are Gaussian Error Linear Units (GeLU, Hendrycks and Gimpel 2023). Early stopping was used
when the validation loss did not improve. The default configuration is identified with the red area in the following
figures.

The first hyperparameter tested is the number of channels (d,). It has a significant effect on the predictions
accuracy since Fig. 3.14a shows a steep reduction of the frequency biases when the number of channels increases.
Improvements are similar for all frequency ranges. For high frequencies, the relative frequency bias shrinks from
-58 % to =30 % when increasing the number of channels from 8 to 28. However, it does not seem beneficial to go
beyond 28 channels. Note that since all models underestimate the frequency content, y-axes display the oppositive
of the frequency biases. Also, the best models have the lowest amplitude of frequency biases.

As already seen in Tab. 3.4, the number of layers considerably influences the F-FNO accuracy. Figure 3.14a details
the relative frequency biases for models having between 4 and 28 layers. The most striking improvements occur
between 4 and 16 layers but the biases keep reducing when the number of layers is increased beyond 16. The linear
decrease between 20 and 28 layers even suggests that deeper models could be beneficial.

The number of Fourier modes selected in each factorized Fourier layer is a key hyperparameter but it seems to
have much less influence than the number of layers or the number of channels. The maximum number of Fourier
modes is determined by the variables size. Since inputs and outputs have a spatial size of 32, at most 16 spatial
Fourier modes can be computed. Models with 8 (Fig. A.10 top left), 12 (Fig. A.10 top right), and 16 (Fig. A.10 bottom)
spatial Fourier modes were tested. Along the third dimension, inputs are of size 32 (depth of the geological model)
and outputs are of size 320 (number of time steps of the surface wavefields). Table A.5 indicates the number of
points and modes in the third dimension for the reference model. When testing a model with 20 Fourier modes in
the third dimension for instance, the first five layers were preserved with 16 modes and the three last layers were
reduced to 20 modes.

layer 1 | layer 2 | layer 3 | layer 4 | layer5 | layer 6 | layer 7 | layer 8
Third dimension 32 32 32 32 64 128 256 320
Number of modes M 3 16 16 16 16 16 32 32 32

Table A.5: Number of points in the third dimension and number of Fourier modes in the reference F-FNO model.

Figure A.10 shows that 16 spatial Fourier modes are slightly preferable than 12 or 8. Indeed, with 8 modes in the
third dimension, the high-frequency frequency bias reduces from -43 % at 8 spatial modes to -39 % at 16 spatial
modes. When using 8 or 12 spatial modes, the frequency bias slightly decreases when increasing the number
of modes in the third dimension. However, with 16 spatial modes, increasing the number of modes in the third
dimension does not improve the results (bottom panel in Fig. A.10). In particular, this means that the larger errors
on the high-frequency components of the time series are not due to a limited representation of temporal patterns.

Some other hyperparameters had almost no impact on the predictions’ accuracy; their detailed results are given
in the appendix. Firstly, padding is often added on the sides of the domain to account for the lack of periodicity in
the inputs. While the reference model has no padding, we tested adding 2 to 6 zero pixels to the x and y sides of the
inputs. Figure A.11 shows that the frequency biases are the same for all padding values. Therefore, padding is not
necessary in our model.

Some versions of the FNO also proposed modifying the grid of coordinates that are concatenated with the inputs.
In the original implementation, each coordinate is represented by a linear grid between 0 and 1. This configuration
was used in the reference model. An alternative method relies on a sinusoidal decomposition of the coordinates
where, for instance, the x coordinate will be described by two grids: (cos x;, sinx;), 0 < z; < 2m. Our experiments
show that the sinusoidal decomposition slightly altered the predictions accuracy (Tab. A.6).

Finally, we mention that our model requires increasing the third dimension from a size of 32 (corresponding
to the depth of the geological models) to a size of 320 (corresponding to the number of time steps in the surface
wavefields). Since this is unusual practice, we tested three different strategies of increasing the dimension to ensure
that this did not impact the results (Tab. A.7).
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Figure A.10: Relative frequency bias depending on the number of Fourier modes. In each panel, the number of
spatial modes (first and second dimensions) is fixed. The reference model has 16 spatial modes and 32 modes in
the third dimension (red area).

A.3.3 F-FNO training strategy

Besides considerations on the model hyperparameters, training choices such as the loss function, the number of
training samples, the batch size, and the learning rate are crucial to obtain a model with a satisfying accuracy.

Common loss functions to train neural operators involve pixel-wise metrics such as the (relative) MAE and (rela-
tive) MSE. We investigated linear combinations of these two loss metrics by constructing the loss function as a linear
combination of relative MAE and relative MSE:

L()=wrMAE(-)+ (1 —-w)rMSE(-), 0<w<1

It is important to note that predictions are assessed with frequency biases, which are independent from the loss
function. Figure A.12 shows a clear improvement for all frequency ranges when using only the relative MAE.

When training deep neural networks, larger datasets (almost) always improve the predictions’ accuracy. How-
ever, in the context of supervised learning when data are expensive to acquire, one tries to limit the size of datasets.
Our dataset contains 27 000 training data and Fig. A.13 shows similar results for models trained with 22 000 and
27000 samples. This suggests that our database is well-suited for training the 3D F-FNO.

The influence of the learning rate was firstly evaluated by varying the initial learning rate between 1 x 107 and
1 % 1073, For small learning rates (1 x 1074 and 2 x 107 ), the convergence rate is too low and the loss function
reaches a sub-optimal plateau (Fig. A.17). For larger learning rates, it is noticeable that the training remains very
stable for learning rates up to 1 x 1073 (we observed divergence issues above this value, not shown). Analysing the
Fourier relative biases in Fig. A.14 (left) suggests that a learning rate of 6 x 1074 may be preferred.

In the default training configuration, the learning rate was halved when the validation loss did not improve for 10
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are reported for 1000 training samples (filled markers and solid lines) and 1000 validation samples (unfilled markers
and dashed lines). Note that the y-axis gives the opposite of the frequency bias.

Model rEFT 1 ow rFFT mid rFFThigh
Cartesian grid (reference) | -0.15+£0.14 | -0.26 £0.19 | -0.37 £ 0.26
Sinus grid -0.18 £ 0.15 | -0.29 £0.20 | -0.40 £ 0.26

Table A.6: Mean and standard deviation of relative frequency biases for 1000 validation samples.

epochs. This well-known strategy aims at exploring potentially close local minima by reducing the gradient descent
step once the algorithm starts converging. Among the diversity of alternative learning rate schedulers, we tested
the cosine annealing with warm restarts (Loshchilov and Hutter 2017) and the one cycle scheduler (Smith and Topin
2018). The cosine annealing with warm restarts begins with a large learning rate (6 x 107%) that is sinusoidally
reduced for 70 epochs where it is brutally increased to its initial value (see Fig. A.18). The periodic increases aim
at helping the gradient descent algorithm escape local minima where it could get trapped during training. Our
experiments show that the loss function decreased more slowly than the reference loss during the first period due
to the diminishing learning rate (Fig. A.14, right). Moreover, the successive restarts did not allow the loss to reduce
significantly, thereby reaching a plateau higher than the reference.

Contrary to the cosine annealing scheduler, the one cycle scheduler starts with a very low learning rate that
should allow the gradient descent to reach some initial stability. Then, the learning rate increases up to 2.5 x 107
to explore vast portions of the loss landscape. Figure A.14 (right) shows that the loss function degrades and becomes
noisy at this point. Then, the learning rate is slowly reduced to let the gradient descent converge to a local minima
(see Fig. A.18). However, the convergence value was significantly higher than the value obtained with the reference
scheduler. Therefore, with the parameters used in these experiments, halving the learning rate on plateaus remains
the best strategy.

Lastly, we explored the variability of results due to the weights' initialization. With the default configuration,
models having 4, 8, 12, and 16 layers were trained with five different seeds for the random distribution of initial
weights. The largest variability in relative frequency biases was 0.07, which remains smaller than the differences
between two models with a distinct number of layers (Fig. A.15).
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Model (3rd dimension) rFFTiow rFFTmid rFFThigh

32-32-32-32-64-128-256-320 (reference) | -0.15+ 0.14 | -0.26 = 0.19 | -0.37 £ 0.26
32-48-64-96-128-192-256-320 -0.16 £ 0.14 | -0.27 £0.19 | -0.38 +0.26
32-320-320-320-320-320-320-320 -0.16 +0.14 | -0.27 £0.20 | -0.38 +0.26

Table A.7: Mean and standard deviation of relative frequency biases for 1000 validation samples.
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Figure A.12: Relative frequency bias as a function of the weight w of the relative MAE in the loss function. The
reference model is evaluated with only the rMAE (red area).
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Figure A.15: Relative frequency bias for models with 4, 8, 12, and 16 layers when using five different initialization
values for each model.

128



B

Training Validation
& low freq. low freq.
0.5 1 == medium freg. == meadium freq.
=d— high freq. =&= high freq.
E 044 .
= t::_—-_x.----——-—-_ﬁ'_"_‘-_d-' . 3
:
5 0.3
[ e et L L =
— — -
i
I 0.2 4
- i - -
1.1 1
oo ¥ T T =
B 16 ]
Batch siga

Figure A.16: Relative frequency bias as a function of the number of elements per mini-batch. The reference model
is trained with mini-batches of 16 (red area).
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Figure A.17: Evolution of the training loss for several initial rates between 1 x 10™* and 1 x 1073
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A.3.4 F-FNO robustness to noise

Velocity models in the HEMEW-3D database were created from random fields with spatially coherent features. In
reality, they could be corrupted by some white noise originating, for instance, from measurement errors. In this
case, itis desirable that predictions are not too sensitive to noise in the velocity models. To test this, we added white
noise as a centered Gaussian distribution A/(0, am) with a noise level o varying from 0.01 to 0.25 and oy, being
the mean standard deviation of velocity models.
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Figure A.19: Relative frequency bias (left) and relative RMSE (right) for increasing noise level in the velocity models.
Predictions are compared with surface wavefields generated in unperturbed velocity models (blue lines) and noisy
velocity models (black lines).

Figure A.19 firstly compares the F-FNO predictions on noisy velocity models with the ground truth simulations in
the unperturbed velocity models (blue dashed curves). The relative frequency bias degrades slightly but the degra-
dation remains very limited, from —-24.4 % without noise to -27.0 % with a 0.25 noise level (for the high-frequency
bias). For the relative RMSE, this represents an increase from 16.6 % to 17.1 %. These results show that the F-FNO is
very robust to noise added in the inputs.

Secondly, the predictions on noisy velocity models are compared with the true surface wavefields generated in
the same noisy velocity models (black curves in Fig. A.20). Then, the prediction error increases slightly more, es-
pecially in the high-frequency range (relative high-frequency frequency bias degrades from -24.4 % without noise
to —27.7 % with a 0.25 noise level). This can be better understood by examining the time series in Fig. A.20. When
simulating the true wavefield in the noisy velocity model, the small-scale heterogeneities added by the noise dis-
perse and diffract seismic waves. This is reflected by the presence of small-scale fluctuations after 3.5s in Fig. A.20
(black curves, right panels). It has already been mentionned that the F-FNO predictions have limited high-frequency
accuracy, thereby explaining that prediction errors are higher when comparing with simulations in noisy velocity
models.

However, when studying noise robustness, the main interest remains in having predictions on noisy inputs close
to predictions on unperturbed inputs. This is achieved by the F-FNO to a great extent, as shown by our first experi-
ment.
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Figure A.20: Surface wavefield at one sensor synthetized with the unperturbed velocity model (black curves, left
panel) and the noisy velocity model (black curves, right panel). F-FNO predictions are shown for the unperturbed
velocity model (red dashed curves, left panel) and the noisy velocity model (red dashed curves, right panel). The
corresponding velocity models are illustrated on the left. Time series of velocity wavefield are given in the three

components (East-West, North-South, vertical).
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A.4 Multiple Input Fourier Neural Operator (MIFNO)

A.4.1 Metrics analyses
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Figure A.21: Distribution of the frequency bias for each sensor and each sample in the training (grey area) and
validation (blue line) dataset.

Table A.8 compares the 8-layer MIFNO taking as input the 6 components of the moment tensor (M, M, M,

My, M., M,,) or the equivalent representation with 3 angles (strike, dip, rake).

Ty

Model rRMSE FFTiow FFFT mig rFFThigh EG PG
angle | 0.341;0.589 | -0.545; -0.095 | -0.63;-0.15 | -0.68;-0.18 | 6.32; 7.89 | 8.07;9.17
moment | 0.338;0.589 | -0.536;-0.091 | -0.64;-0.16 | -0.70;-0.20 | 6.29;7.86 | 8.06;9.16

Table A.8: 1st and 3rd quartiles of the metrics computed on 1000 validation samples. rRMSE: relative RMSE (0 is
best), rFFTow: relative frequency bias 0-1Hz (O is best), rFFTyq: relative frequency bias 1-2Hz (0 is best), rFFThigh:
relative frequency bias 2-5Hz (0 is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10 is
best). For frequency biases, negative values indicate underestimation.
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A.4.2 Comparison with baseline models

Table A.9 compares a 16-layer F-FNO with a 16-layer MIFNO predicting surface velocity wavefields when the source
has a fixed position and orientation. It should be noted that the MIFNO was not specifically trained on this database.

Dataset with a fixed source position and fixed source orientation

Model | rRMSE FFTIow FFT mig rFFThigh EG PG
F-FNO | 0.14;0.25 | -0.30;0.03 | -0.39;0.01 | -0.44;0.01 | 7.09; 8.37 | 8.49;9.32
MIFNO | 0.20;0.31 | -0.40;-0.03 | -0.51;-0.06 | -0.56;-0.08 | 6.36;7.65 | 7.71; 8.83

Table A.9: 1st and 3rd quartiles of the metrics computed on 1000 validation samples. rRMSE: relative RMSE (0 is
best), rFFTow: relative frequency bias 0-1Hz (O is best), rFFTmq: relative frequency bias 1-2Hz (0 is best), rFFThigh:
relative frequency bias 2-5Hz (0 is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10 is
best). For frequency biases, negative values indicate underestimation.

Figure A.22 illustrates the F-FNO and MIFNO predictions when the source has a fixed position and orientation.
Envelope GOFs of the F-FNO are between 8.3 and 8.7, MIFNO ones are between 7.5 and 8.7. Phase GOFs of the
F-FNO are between 9.2 and 9.6, MIFNO ones between 8.2 and 9.4.

Dataset with a random source position and fixed source orientation

Model rRMSE FFTow rFFTmid rFFThigh EG PG
F-FNO 8 layers | 0.14;0.24 | -0.31;0.01 | -0.41;-0.03 | -0.48;-0.04 | 6.71, 8.05 | 8.26;9.19
MIFNO 8 layers | 0.13;0.23 | -0.27;0.05 | -0.37;-0.00 | -0.43;-0.00 | 6.93;8.24 | 8.40;9.26

Table A.10: 1st and 3rd quartiles of the metrics computed on 1000 validation samples. rRMSE: relative RMSE (0 is
best), rFFTow: relative frequency bias 0-1Hz (O is best), rFFTmq: relative frequency bias 1-2Hz (0 is best), rFFThigh:
relative frequency bias 2-5Hz (0 is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10
is best). For frequency biases, negative values indicate underestimation. Both models were trained with 20000
samples for 300 epochs.
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Figure A.22: East-West component of ground motion from simulations (black solid line), F-FNO predictions (blue
dashed line), and MIFNO predictions (red dashed line)
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A.4.3 Influence of the source parameters

Influence of the source arlentation on the prediction accuracy
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Figure A.23: For 1000 samples, the 1-2 Hz frequency bias is shown against the source orientation (strike, dip, rake).
Influence of the source poasition on the prediction accuracy
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For 1000 samples, the envelope and phase GOF of MIFNO predictions is shown against the source
depth.
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A.4.4 Out-of-distribution data
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Figure A.25: Envelope and phase GOF for the geology depicted in Fig. 3.22. The white star denotes the epicenter.
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Figure A.26: East-West component of ground motion from simulations (black solid line) and MIFNO predictions (red
dashed line) for the overthrust geology depicted in Fig. 3.22
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Figure A.27: East-West component of ground motion from simulations (black solid line) and MIFNO predictions with
resolution 64 (orange dashed line)
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A.5 Applications to the Le Teil earthquake

A.5.1 Transfer learning

Validation loss
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Figure A.28: Evolution of the validation loss computed as the relative Mean Absolute Error when the MIFNO is trained
on the Le Teil database. The black line corresponds to a random initialization. Colored lines illustrate trainings with
different number of training samples.

Le Teil database with a fixed source

Model rRMSE FFT ow FFT mid rFFThigh EG PG
Nirain=3000 | 0.17;0.28 | -0.45;-0.04 | -0.64;-0.14 | -0.65,-0.12 | 5.98;7.76 | 7.49; 9.00
N7 =0 0.31;0.45 | -0.28;0.49 | -0.59;0.39 | -0.70;-0.22 | 5.47;6.32 | 5.43,6.33
Nt=10 | 0.17;0.29 | -0.29;0.14 | -0.47;0.02 | -0.48;0.05 | 6.35;7.84 | 7.50; 8.95
N1.=50 | 0.14;0.26 | -0.29;0.08 | -0.43;0.03 | -0.45;0.03 | 6.61;8.20 | 7.95;9.20
Nt.=100 | 0.14;0.25 | -0.28;0.07 | -0.43;0.02 | -0.44;0.02 | 6.68;8.25 | 8.04;9.23
N =250 | 0.12;0.23 | -0.24;0.08 | -0.38;0.04 | -0.39;0.04 | 7.02;8.54 | 8.32;9.37
N=500 | 0.11;0.22 | -0.24;0.06 | -0.36;0.05 | -0.38;0.03 | 7.14;8.66 | 8.42;9.43
N1 =1000 | 0.10;0.22 | -0.22;0.07 | -0.35;0.06 | -0.37;0.04 | 7.25;8.75 | 8.50; 9.47
N1 =2000 | 0.10;0.21 | -0.21;0.07 | -0.34;0.06 | -0.36;0.05 | 7.35;8.85 | 8.57; 9.51
N1.=3000 | 0.10;0.21 | -0.22;0.06 | -0.34;0.05 | -0.37;0.03 | 7.36;8.86 | 8.60; 9.53

Table A.11: 1st and 3rd quartiles of the F-FNO metrics computed on 700 test samples. rRMSE: relative RMSE (0 is
best), rFFTow: relative frequency bias 0-1Hz (O is best), rFFTmq: relative frequency bias 1-2Hz (0 is best), rFFThigh:
relative frequency bias 2-5Hz (0 is best), EG: enveloppe Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10
is best). For frequency biases, negative values indicate underestimation.
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Figure A.29: Same as Figure 4.3 but only 500 transfer learning samples
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Figure A.30: Envelope and phase GOF computed on 700 test samples when the MIFNO is trained on non-overlapping
sets of transfer learning samples. Each boxplot corresponds to the training with one set of transfer learning samples.
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A.5.2 Le Teil earthquake: uncertainty quantification

Parameter Ro R1 R> R3 R4 Rsg
Lz o -0.010 +0.010 0.006 +0.007 0.000 +0.017 0.011 +0.013 0.014 £0.016 -0.000 -+ 0.1005

y,0 0.003 4+ 0.007 -0.002 £0.006 -0.007 £0.020 -0.001 £0.012 0.011 £ 0.017 0.004 £ 0.006
420 -0.003 + 0.008 -0.002 +0.008 -0.005 4+ 0.019 -0.003 +0.012 -0.004 £0.014 -0.000 % 0.006
o) -0.006 +-0.013  0.009 £0.010 0.0104+0.025 0.003£0.014 0.014 +0.017 0.004 + 0.007
lrn 0.005 £ 0.009 0.001 +0.007 -0.0084+0.017 0.002+0.011 0.01740.015 -0.002 + 0.008
Ly -0.003 +0.010 0.0104+0.011 -0.024 4+ 0.021 0.004 +0.011  0.005 £ 0.014 -0.001 % 0.007

2,1 0.000 4+ 0.008 -0.000 £ 0.008 -0.014 £0.020 -0.001 £0.012 0.014 +0.016 0.004 4 0.008
o1 -0.004 £ 0.011  0.003 +0.008 -0.006 +0.020 0.006 £0.017 0.008 £0.018 0.002 £ 0.008
lyo -0.001 +0.008 0.001 +£0.007 -0.0034+0.018 -0.002+£0.012 0.014 +0.015 0.002 + 0.007
ly2 -0.003 +0.010  0.001 £0.011 -0.011 +0.021  0.001 £=0.013 0.012 +0.016  -0.002 + 0.007
L9 0.002 +0.008 0.002 +0.007 -0.001 £0.020 0.009 +0.015 0.012 4+ 0.016 0.001 4 0.006
02 0.000 4+ 0.008 -0.001 £0.010 -0.018 £0.023 0.001 £0.014 0.005+ 0.020 -0.002 4 0.006
lr3 -0.000 £ 0.011 -0.001 +0.008 0.0104+0.017 0.009 +£0.011  0.011 £0.016  -0.004 £ 0.006
ly3 -0.001 £ 0.010 0.005+0.010 -0.010£0.018 0.005+0.012 0.019£0.016 0.004 £ 0.007
{3 -0.002 + 0.009 -0.005 + 0.006 -0.008 +0.018 -0.000 +0.010 0.004 +0.016 -0.001 + 0.005
03 0.007 £0.012 -0.007 + 0.008 -0.001 40.022 -0.003 +0.014 0.003 £ 0.016 0.001 £ 0.010
lra 0.000 +0.012 -0.002 +0.007 -0.012+£0.016 0.005+0.011 0.017 +0.019 0.004 + 0.007
lya 0.002 £ 0.012 -0.000 £ 0.007 -0.018 £0.020 -0.004 £0.013 0.011 £0.014 0.001 £ 0.005
lya 0.001 £0.009 0.005+0.011 -0.024 £0.017 -0.001 £0.013 0.008 £0.015 -0.000 £ 0.007
04 0.006 £0.010 0.002 +0.011 -0.01040.024 0.005+0.013 0.021 4+ 0.016 0.006 + 0.007
Sa 0.209 £0.033 0.3494+0.049 0.0734+0.018 0.475+0.036 0.080 4 0.017 0.349 + 0.035
sg 0.231 +0.041 0.1124+0.032 0.116 £0.024 0.059 +£0.019  0.359 + 0.041 0.099 + 0.026
Sn -0.002 + 0.006 -0.000 4+ 0.004 -0.002 4+ 0.006 -0.001 £0.005 -0.006 + 0.007 0.004 £ 0.005
strike ¢ 0.011 £0.006  0.001 £0.005 0.020 £0.010 0.017 £0.007 0.005 + 0.005 0.009 £ 0.006
dip ¢ 0.030 £0.018 0.021 +0.014 0.038 £0.014 0.0204+0.013  0.010 £ 0.011 0.014 £ 0.010
rake A 0.001 £0.010 -0.006 + 0.006  0.024 4+0.009 0.008 + 0.009 0.001 4 0.005 0.007 + 0.006

Table A.12: First-order Sobol indices of the PSA at T=0.2 s for the six receivers
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Total Sobol indices for PSA at receiver Bz (8.85km, 0.75km)

B Geolegical heterggeneities 8 Source position BBl Source orentation
| | |
[ [

|'1':'

I
o
o
Sobol index

L T
LS T T '5"'._1.-'" BT L T T ]
LERR B! L TR TR n‘t_‘:h.r.q'lh ||_-|_-"' 0= g 5*'!‘ :Iﬁ t_-"'

&

LT PP

Total Sobol indices for PSA at receiver By (0.75km, B.85km)

B Geological heterageneities I Source position B Source orentation
| _— L
| [ [

|'1':'

1
o
ohi
Sobol index

-
=

'F

[ ad

LT T Y
WY PN ST G s s
WM T OG0t s s g B el
S
Figure A.31: Total Sobol indices for the PSA on the East-West component computed at receiver Ry (top) and Ry

(bottom). Each of the 26 parameters is reported on the x axis and the ¥y axis denotes the period.
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Parameter Ro R1 R2 R3 R4 Rg
Ly 0.07 £0.01 0.08+0.01 0.38+0.02 0.16£0.02 0.234+0.02 0.07£0.01
Ly 0.07+0.01 0.07£0.01 0384+0.02 0.16+0.02 0.2440.02 0.06=+0.01
4.0 0.07+0.01 0.07£0.01 0394+0.02 0.16£0.02 0.254+0.02 0.06=+0.01
o) 0.10 £0.01 0.10£0.02 0.52+0.02 0.214+0.02 0.3440.02 0.084+0.01
Uy 0.07 +£0.01 0.074+0.01 0.39+0.02 0.154+0.02 0.24+0.02 0.07£0.01
ly1 0.06 £0.01 0.074+0.02 0.39+0.02 0.16£0.02 0.24+0.02 0.07£0.01

2,1 0.07+0.01 0.07+£0.01 0384+0.02 0.16+£0.02 0.2540.03 0.06=+0.01
o1 0.10+0.01 0.09+£0.01 0.534+0.03 0.22+0.02 0.31+0.02 0.08=+0.01
lyo 0.06 £0.01 0.07+0.01 0.37+0.02 0.164+0.02 0.234+0.02 0.06+0.01
ly2 0.07 +£0.01 0.084+0.02 0.40+0.02 0.164+0.02 0.24+0.02 0.06+0.01
l.2 0.07 £0.01 0.074+0.01 0.39+0.02 0.18+0.04 0.234+0.02 0.06+0.01
02 0.09+0.01 0.09+£0.01 05240.02 0.21+£0.02 0.3140.02 0.08=+0.01
lr3 0.08+0.01 0.08+£0.02 0.374+0.02 0.17+£0.02 0.244+0.02 0.07=+0.01
ly3 0.07+0.01 0.07£0.01 038+0.02 0.15+£0.02 0.2440.02 0.06+0.01
l.3 0.07+£0.01 0.06+0.01 0.38+0.02 0.154+0.02 0.24+0.02 0.06+0.01
03 0.09+£0.01 0.104+0.02 0.52+0.02 0.224+0.02 0.32+0.02 0.08+£0.01
lra 0.07 £0.01 0.06 £0.01 0.39+0.02 0.16£0.02 0.254+0.02 0.06+£0.01
Ly 4 0.07+0.01 0.06 £0.01 04040.02 0.16+£0.02 0.244+0.02 0.06+0.01
loa 0.07+0.01 0.07£0.01 0394+0.02 0.17+£0.03 0.254£0.02 0.06+0.01
o4 0.10 £0.01 0.10£0.02 0.52+0.02 0.204+0.02 0.314+0.02 0.08 4+ 0.01
Sa 0.62+0.05 0.784+0.08 0.39+0.02 0.79+0.05 0.36+0.02 0.78 +0.07
sg 0.69 £0.07 0.5540.06 0.65+0.03 0.39+0.04 0.82+0.05 0.51+£0.05
Sn 0.06 +£0.01 0.05+£0.01 0.07+0.01 0.04+£0.01 0.08+0.01 0.05=+0.01
strike ¢ 0.04 +£0.00 0.04+£0.01 0.094+0.01 0.06£0.01 0.03£0.00 0.03+0.01
dip ¢ 0.26 £0.03 0.29+0.04 0.22+0.01 0.1240.01 0.114+0.01 0.18£0.02
rake A 0.07 +£0.01 0.084+0.02 0.13+0.01 0.06 £0.01 0.03+0.00 0.05+0.01

Table A.13: Total indices of the PSA at T=0.2 s for the six receivers
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Figure A.32: Distribution of coefficients of variation inside each layer for samples in S (grey) and admissible samples
in S|y* (blue). The coefficients of variation corresponding to the observation x;, 87 are shown with the red dots.
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PSA at receiver Rs (0.75km, B.85km) and T=1.0s
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Figure A.33: Predicted PSA at receiver R4 shown against the simulated PSA (colored dots, where darker colors corre-
spond to higher points density). Blue lines show the skewed normal distribution that approximates the prediction

error.
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Figure A.34: Same as Fig. 4.14 for receiver R3
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ED-EE percentile PSA(T=0.2s) at receiver Ay (0.75km, 8.85km}

PSA im/s?)
o
——
T
i

predictians
—— comacted predictions
— simulations
¥ L L LE
e 10 1 10

Mumbaer af samples (np

Figure A.35: Same as Fig. 4.14 for period T'=0.2s
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